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Abstract 

Background Cancer represents one of the biggest healthcare issues confronting humans and one of the big chal‑
lenges for scientists in trials to dig into our nature for new remedies or to develop old ones with fewer side effects. 
Halophytes are widely distributed worldwide in areas of harsh conditions in dunes, and inland deserts, where, to cope 
with those conditions they synthesize important secondary metabolites highly valued in the medical field. Several 
Tamarix species are halophytic including T.nilotica which is native to Egypt, with a long history in its tradition, found in 
its papyri and in folk medicine to treat various ailments.

Methods LC–LTQ–MS–MS analysis and 1H‑NMR were used to identify the main phytoconstituents in the n‑ butanol 
fraction of T.nilotica flowers. The extract was tested  in vitro for its cytotoxic effect against breast (MCF‑7) and liver cell 
carcinoma (Huh‑7) using SRB assay.

Results T.nilotica n‑butanol fraction of the flowers was found to be rich in phenolic content, where, LC–LTQ–MS–
MS allowed the tentative identification of thirty‑nine metabolites, based on the exact mass, the observed spectra 
fragmentation patterns, and the literature data, varying between tannins, phenolic acids, and flavonoids. 1H‑NMR 
confirmed the classes tentatively identified. The in‑vitro evaluation of the n‑butanol fraction showed lower activ‑
ity on MCF‑7 cell lines with  IC50 > 100 µg/mL, while the higher promising effect was against Huh‑7 cell lines with an 
 IC50= 37 µg/mL.

Conclusion Our study suggested that T.nilotica flowers’ n‑butanol fraction is representing a promising cytotoxic can‑
didate against liver cell carcinoma having potential phytoconstituents with variable targets and signaling pathways.

Keywords Tamarix nilotica flowers, LC–LTQ–MS–MS, 1H‑NMR, Cytotoxicity, MCF‑7, Huh‑7

†Marwa A. A. Fayed and Nermeen Yosri contributed equally to this work.

*Correspondence:
Marwa A. A. Fayed
marwa.fayed@fop.usc.edu.eg
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12906-023-03989-8&domain=pdf
http://orcid.org/0000-0001-5609-7436


Page 2 of 14Fayed et al. BMC Complementary Medicine and Therapies          (2023) 23:169 

Introduction
All over the world, cancer ranks as a primary cause of 
mortality and a significant roadblock to raising life expec-
tancy [1, 2]. According to World Health Organization 
(WHO) estimations for 2022, globally cancer represented 
the cause of death for 16% before the age of 70 [3]. Hepa-
tocellular carcinoma is the predominant primary cancer 
in most countries and the fourth most prevalent cancer 
across the globe [4, 5] besides being the third most lethal 
cancer-associated mortality in the world [6].

Additionally, breast cancer represents the first-leading 
cause of death for women, almost 2.3  million women 
received a breast cancer diagnosis in the world in 2020, 
and 685,000 of them passed away. Somewhere in the 
globe, a woman receives a breast cancer diagnosis every 
14  s [6, 7]. The main regimen of treatment of various 
forms of cancer is to stop unregulated cell growth which 
can be achieved by using cytotoxic drug medications. 
The effect of these drugs can be estimated by using cell-
based in vitro assays to measure the degree of tissue-level 
cell damage [8].

However, the use of conventional chemotherapeu-
tic agents has been associated with a wide range of side 
effects and toxicities; therefore, new approaches for the 
prevention and cure of cancer represent a great challenge 
for researchers [9]. One of the most crucial methods for 
treating particular types of cancer is the discovery of 
natural anti-cancer medications, which requires constant 
monitoring of various sources such as marine animals, 
terrestrial plants, and seaweeds [10].

There are more than 60 species of halophyte plants in 
the genus Tamarix  belonging to the Tamaricaceae fam-
ily, which are cultivated in almost every region of the 
world under the common names “Tamarisk” and “salt 
cedar” [11, 12]. It has a variety of therapeutic uses in 
conventional medicine [11]. Due to the plant’s astringent 
and cleaning properties on internal organs, which were 
attributed to its bitter taste, it was known to have a chilly 
and dry nature [11]. Certain Tamarix species are recom-
mended as mild laxatives, anti-tussive, antipyretics, and 
tonics for the liver and spleen [11, 13]. Some species are 
used to treat leucorrhea and uterine bleeding because 
they have anti-inflammatory and wound-healing char-
acteristics [14]. It can be applied topically to treat skin 
conditions like eczema and anal fissure [13]. Biological 
studies have demonstrated that some Tamarix species 
can be used as anti-Alzheimer [15], anti-diabetic [16], 
anti-hyperlipidemic [17], anti-inflammatory [18, 19], 
antimicrobial [20, 21], antinociceptive [22], antioxidant 
[23], anti-coagulation [24], anti-rheumatoid [25], cyto-
toxicity [26], hepatoprotective [27] and wound healing 
[28] activities. Tamarix is represented in Egypt with two 
indigenous species which are T. aphylla (L.) H. Karst and 

T. nilotica (Ehrenb.) Bunge. T. nilotica is a rich source of 
polyphenolics including hydrolyzable tannins, sulfated 
and non-sulfated flavonoids, and phenylpropanoids [29, 
30]. T. nilotica extracts have demonstrated antioxidant, 
antiangiogenic, cytotoxic, hepatoprotective, antifibrotic, 
antidiabetic, and antimicrobial activities in relation to 
their phenolic contents [29–31]. Although both species 
are indigenous in Egypt, many studies targeted T. aphylla 
which was mentioned for comparison to T. nilotica [16, 
20, 22, 28, 32–35]. Besides, T. nilotica was the one easily 
available for us to carry on with this study.

In the  previous published studies, T. nilotica received 
much attention in studying its cytotoxic activity. Various 
studies reported the effect of leaves, methanolic flower 
extracts on different cell lines including lung (A-549), 
liver (Huh-7), colon (HCT-116), and breast (MCF-7) can-
cer cell lines [36–38]. T. nilotica flower extract reported 
to exhibit hepatoprotective and antioxidant activities 
[38]. However, there are no studies concerning the cyto-
toxic activities of the n-butanol fraction of T. nilotica 
flower.

The present work aimed to investigate the possible 
cytotoxic activity of the n-butanol extract of T. nilotica 
flowers against liver (Huh-7) and breast (MCF-7) cell 
carcinoma while performing an in-depth phytochemi-
cal analysis of the same extract n-butanol extract using 
LC-MS/MS analysis to relate the activity to the extract’s 
metabolites.

Methods
Statement
All experiments and methods including the collection of 
the plant were performed following the relevant national, 
and international guidelines and legislation of the Faculty 
of Pharmacy, University of Sadat City, Sadat City, Egypt.

Extraction and Isolation
The air-dried flowers of T. nilotica (Ehrenb.) Bunge 
(1  kg) was exhaustively extracted with 80% methanol; 
excess solvent was removed using a rotary evapora-
tor. The crude aqueous methanolic extract was further 
fractionated using solvents of different polarity viz., 
n-hexane, dichloromethane, n-butanol, and water. The 
fractions were dried under vacuum to give their corre-
sponding weights of 30 gm, 25 gm 15 gm, and 45 gm, 
respectively. All fractions were stored at -20  °C till fur-
ther analysis [39].

LC–LTQ–MS–MS analysis
The n- butanol extract was analyzed and processed using 
LC–MS–MS. A Shimadzu LC-10 HPLC with a Grace 
Vydac Everest Narrowbore C-18 column (100  mm × 
2.1 mm i.d., 5 μm, 300 Å). An LC–MS, connected to an 
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LTQ Linear Ion Trap MS (Thermo Finnigan, San Jose, 
CA) was utilized with a mass range of 100–2000  m/z. 
A 2 µL sample was injected using an autosampler. A 
35 min method was used as follows: 5 min isocratic run 
using 5% acetonitrile (Acn) and 0.05% formic acid (FA), 
then a gradient was run for 25 min until 95% AcN 0.05% 
FA. Finally, there was 5 min of conditioning the column 
with 5% AcN and 0.05% FA. The data were processed 
and analyzed using foundation 3.1_Xcalibur_3.1.6610 as 
well as MZmine3. Furthermore, the raw data files were 
converted to mzXML format using MSConvert from the 
ProteoWizard suite [40]. The molecular network was cre-
ated using the Global Natural Products Social Molecular 
Networking (GNPS) online workflow. The spectra in the 
network were then searched against the GNPS spectral 
libraries and published data [41, 42].

Using the GNPS dataset, the raw MS file was analyzed. 
By analyzing the similarity between the fragmentation 
pattern from the raw mass spectrum and the GNPS 
library, GNPS assists in the identification and discov-
ery of metabolites. Other installed programs, including 
MSConvert (https:// prote owiza rd. sourc eforge. io/), File 
Zilla (https:// filez illa- proje ct. org/), and Cytoscape ver-
sion 3.5.1(https:// cytos cape. org/), were used to operate 
with GNPS at the following link (https:// gnps. ucsd. edu/) 
[43, 44].

1H‑NMR analysis
1H-NMR spectra were recorded at 298  K on a Bruker 
600 MHz (TCI CRPHe TR-1H and 19F/13C/15N 5 mm-EZ 
CryoProbe) spectrometer. Chemical shifts were refer-
enced to the solvent peak for  CH3OD at δH 3.3100 ppm 
[44, 45].

Cytotoxic evaluation of the n‑butanol fraction of T. nilotica 
flowers
Cell cultures
Breast adenocarcinoma cell lines (MCF-7) and hepat-
ocyte-derived cellular carcinoma cell lines, human 
liver (Huh-7) was obtained from Nawah Scientific Inc., 
(Mokatam, Cairo, Egypt). Cells were maintained in 
DMEM media supplemented with 100 mg/mL of strepto-
mycin, 100 units/mL of penicillin, and 10% of heat-inac-
tivated fetal bovine serum in humidified, 5% (v/v)  CO2 
atmosphere at 37 °C [46].

Cell cytotoxicity
Cell viability was assessed by sulforhodamine B (SRB) 
assay on two cancer cell lines [47, 48], the human liver 
cancer cell line (Huh-7) and the breast cancer cell line 
(MCF-7). Aliquots of 100 µL cell suspension (5 ×  103^ 
cells) were in 96-well plates and incubated in complete 
media for 24 h. Cells were treated with another aliquot of 
100 µL media containing the n-butanol T. nilotica flower 
extract at two different concentrations (10 and 100  µg/
ml). After 72 h, cells were fixed by replacing media with 
150 µL of 10% TCA and incubated at 4  °C for 1  h. The 
TCA solution was removed, and the cells were washed 
5 times with distilled water. Aliquots of 70 µL SRB solu-
tion (0.4% w/v) were added and incubated in a dark place 
at room temperature for 10  min. Plates were washed 3 
times with 1% acetic acid and allowed to air-dry over-
night. Then, 150 µL of TRIS (10 mM) was added to dis-
solve the protein-bound SRB stain; the absorbance was 
measured at 540 nm using a BMG LABTECH- FLUOstar 
Omega microplate reader (Ortenberg, Germany) [49]. 
The cell morphological analysis was carried out accord-
ing to M. Roy et al. 2017 [50].

Fig. 1 Chemical structures of the tentatively identified compounds in the n‑butanol fraction of T. nilotica flowers numbered according to 
compounds listed in Table 1  

https://proteowizard.sourceforge.io/
https://filezilla-project.org/
https://cytoscape.org/
https://gnps.ucsd.edu/
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Table 1 Metabolites tentatively identified from the n‑butanol fraction of T. nilotica flowers using LC–LTQ–MS–MS analysis in positive 
mode

No. Identification Molecular formula Exact mass Rt (min) m/z MS/MS fragments Ref.
(+ ve) (+ ve)

1 Methyl gallate C8H8O5 184.0371 0.64 184.9999 125.9427‑141.9137 [52]

2 Morphinan‑4,6‑diol, N‑formyl‑
6‑acetate(ester)

C19H23NO4 329.16271 2.31 330.1706 260.1651 [53]

3 1,6‑Di‑O‑galloyl‑d‑glucose (nilocitin) C20H20O14 484.0853 2.42 485.0025 171.0516‑315.0885‑ 333.0927 [30, 54]

4 Hispidulin C16H12O6 300.06339 7.08 300.9978 287.0618, 271.0781 [55]

5 Methyl gallate methyl ether C9H10O5 198.05282 7.53 199.0607 183.2035, 182.1017, 168.1108, 
167.1539

[30]

6 Luteolin C15H10O6 286.0477 8.65 286.9991 259.0632, 153.0582, 137.087 [34]

7 Nilotinin M1 C41H30O27 954.0974 9.67 955.0017 483.0583‑321.0531 [56]

8 5‑Hydroxy‑3,7, 4’ ‑trimethoxyflavone C18H16O6 328.09469 10.68 329.1040 314.9954., 301.1168, 286.0685 [57]

9 Methylquercetin hexoside (tamarixe‑
tin‑3‑O‑hexoside)

C22H22O12 478.1111 11.13 478.9998 316.9950‑ 302.0865 [30]

10 Kaempferol‑3‑O‑glucuronide C21H18O12 462.0798 11.52 463.001 287.0548‑259.0584 [58]

11 Quercetin C15H10O7 302.0426 12.64 302.9995 181.0502‑ 274.9857‑ 153.0431 [54]

12 Coniferyl alcohol 4‑O‑sulphate C10H12O6S 260.0354 13.09 260.9994 231.0484‑ 181.0399 [59]

13 Gemin D C27H22O18 634.0806 14.04 634.9988 483.1707‑321.1121‑303.0972 [60]

14 Pilloin C17H14O6 314.07904 14.44 315.0879 301.1345, 287.1154 [53]

15 Remurin A C48H34O31 1106.10842 15.82 1107.1155 650.3398‑ 498.4456‑346.522 [61]

16 Gallic acid C7H6O5 170.0215 17.13 171.0005 126.936 [30]

17 Ferulic acid C10H10O4 194.05791 17.29 195.06574 179.1750, 150.1777, 135.0983 [30]

18 Caffeic acid C9H8O4 180.04226 21.54 181.0008 163.0144 [34]

19 4’‑Methyl kaempferol (Kaempferide) C16H12O6 300.0633 22.75 301.0015 286.0854‑273.0591 [30, 62]

20 Hirtellin A C82H58O52 1874.1894 23.32 1874.9932 1722.399‑1416.418‑1263.593 [56]

21 Tamarixinin A C75H52O48 1720.1628 25.19 1720.9955 1569.374‑1416.329‑483.5862‑
320.9474

[63]

22 Nilotinin M5 C55H38O36 1274.1142 25.59 1274.9998 1123.457‑971.7501‑819.6556‑
483.5314

[64]

23 Syringaresinol C22H26O8 418.1627 26.49 418.9981 329.5263‑373.5963‑389.6274 [65]

24 Nilotinin D9 C68H50O44 1570.1675 26.61 1570.9984 1419.444‑1266.923 [66]

25 Hirtellin B C82H56O52 1872.1737 27.98 1872.9917 1721.137‑1416.851 [67]

26 Nilotinin D1 C75H54O48 1722.1784 28.27 1723.0042 1570.922‑1418.1300‑1265.0900 [29]

27 Nilotinin M4 C48H32O31 1104.0927 28.49 1105.0016 953.718‑801.6526‑483.6066 [68]

28 1,2,6‑Tri‑O‑galloyl‑β‑D‑glucose C27H24O18 636.0962 29.78 636.9999 465.9667‑423.9695‑483.8437 [69]

29 Kaempferol dimethyl ether sulphate C17H14O9S 394.0358 30.28 395.0009 315.0898‑ 300.1266‑ 285.0565 [30, 54]

30 Methylquercetin‑sulphate (tamarix‑
etin sulphate)

C16H12O10S 396.0151 31.57 397.0016 317.0424‑ 302.349‑ 219.0595 [30, 32]

31 Nilotinin M2 C42H32O27 968.1131 31.85 968.9999 954.2317‑483.8324‑321.0566 [70]

32 Kaempferol C15H10O6 286.0477 32.46 286.9988 241.148‑145.0603 [32]

33 4’‑O‑Methylquercetin (Tamarixetin) C16H12O7 316.0583 32.85 316.9999 302.0346‑195.0663 [30, 62]

34 Kaempferol‑3‑O‑glucoside (Astra‑
galin)

C21H20O11 448.1005 33.3 449.0009 449.0009‑328.0134‑287.0151 [71]

35 Kaempferol methyl ether sulphate C16H12O9S 380.0202 33.75 380.9984 301.0015‑ 286.0854 [30, 59]

36 5,7,4’‑trihydroxy‑3’‑methoxylflavone C16H12O6 300.0633 33.75 301.0015 286.0854‑153.0438‑135.0147 [72]

37 Quercetin‑3‑O‑β ‑D‑glucupyranuro‑
nide

C21H18O13 478.0747 33.86 479.0021 303.1093‑178.0701 [72, 73]

38 N‑trans‑Feruloyltyramine C18H19NO4 313.1314 34.09 314.0005 299.1171‑180.0647‑358.056 
(M + HCOO)+

[74]

39 Ferulic acid sulfate derivative C10H10O7S 274.0147 34.37 274.999 230.0479‑195.0351‑200.0469 [75]
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Statistical analysis
Statistical analysis of the data was performed using one-
way ANOVA, followed by Tukey’s multiple range tests for 
post hoc comparisons (GraphPad Prism, version 8.4.2). 
All the data are presented as the means of 3 determina-
tions ± SE [51].

Results
Metabolic profiling of the n‑butanol fraction of T. nilotica 
flowers using LC–LTQ–MS–MS analysis in positive mode
Based on the exact mass, the observed spectra fragmen-
tation patterns, and literature data, the structural char-
acterizations of chemical composition in the n-butanol 
fraction of the T. nilotica flowers were accomplished. 
Using MS/MS fragmentation pattern, 39 compounds 
from various classes of secondary metabolites were 
identified. The detected compounds’ structures were 
presented  in (Fig. 1). Molecular ion, retention time, and 
MS/MS data of identified compounds were provided in 
(Table 1).

LC–LTQ–MS–MS analysis of the n‑butanol fraction of  
T. nilotica flowers using GNPS‑Aided annotation
Metabolite profiling of the n-butanol fraction of T. nilot-
ica flowers via GNPS based on tandem mass spectrome-
try data as well as a dictionary of natural products yielded 
the annotation of 35 metabolites (N1—N35); mainly fla-
vonoids, phenolics, and fatty acids; respectively (Figs.  1 
and 2; Table 2). Flavonoids were annotated by observing 
the common fragments of retro dials-alder reaction indi-
cated at m/z 153, 152, 135 depending on structure as in 
N11, 15, 16, 17, 18, etc. Additionally, common fragments 
such as [M-18 Da] denoting loss of  H2O molecule, [M-28 
Da] denoting  the loss of CO, [M + H-42]+ correspond-
ing to  C2H2O loss, besides [M + H-46]+, as in quercetin, 
kaempferol, and myricetin derivatives. A common frag-
ment in O-methylated flavonoids is [M + H-15]+ formed 
by loss of methyl radical, as shown in N10 (Kaempferide-
O-hexoside), N21 (Kaempferide-O-hexoside derivative), 

N28 (kaempferide), N20 (tamarixetin), N32 (kaempferol 
4’,7-dimethyl ether), N30 (quercetin- dimethyl ether) and 
N18 (herbacetin-trimethyl ether). Flavanones were anno-
tated in the form of dihydro derivatives of flavonols as 
presented in N26 (m/z 305) tentatively identified as dihy-
dro-quercetin, N31 (m/z 321) identified as dihydromyri-
cetin. Phenolic acids i.e., N5, N12, N13, and N24 were 
previously reported in Tamarix species. GNPS databases 
also aided in identifying N7, N9, N14, N25, and N34, 
besides kaempferol derivatives as well (Fig. 3).

Nuclear magnetic resonance (NMR) analysis
To provide a broader scope of the n-butanol fraction T. 
nilotica flowers metabolome,  1H-NMR was used to pro-
vide insights into both secondary and primary metabo-
lites that were not detected by LTQ-LC-MS-MS. 1H-NMR 
can also be used for structural elucidation and determin-
ing major metabolites. Sugars, flavonoids, phenolics, and 
coumarins were among the major metabolites classes 
detected in the n-butanol fraction of T. nilotica flowers 
using 1H-NMR as detailed in (Table 3).

Fatty acids were discriminated against by the presence 
of terminal  (CH3 ) at δH 0.9 ppm, long chain methylene 
groups at δH 1.2 ppm, and olefinic (CH) showed at δH 5.3 
ppm, as shown in (Fig. 4, M1).

Sugars, the second intense metabolites, were recog-
nized by the presence of anomeric proton annotated 
as, α, β glucose, and sucrose, which exhibited anomeric 
protons at δH 5.18 (d, J = 3.8 Hz) for (Fig. 4, M2), δH 4.58 
(d, J = 7.8  Hz) (Fig.  4, M3), and δH 5.40 (d, J = 3.8  Hz), 
δH 4.17 (d, J = 8.5 Hz) (Fig. 4, M4), respectively. Moreo-
ver, CHs attached to hydroxyl groups exhibited over-
lapped peaks at a range of δH 3.2—4.02 ppm as shown in 
(Fig. 4, M2-M4) [91]. A sharp singlet peak at δH 2.56 (s) 
indicated the presence of a common organic acid eluci-
dated as succinic acid (Fig. 4, M5) [91]. Finally, flavonoids 
and coumarins were found in a region of aromaticity, 
which was recognized by the presence of δH 6.35, 7.60 
(d, J = 15.8 Hz) corresponding to α, β unsaturated ketone 

Fig. 2 LTQ‑LC‑MS‑MS chromatogram of the n‑ butanol fraction of T. nilotica flowers
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in coumarins. Concerning flavonoids overlapped peaks 
at the region of δH 6.0—8.33 ppm, which was elucidated 
with the help of LTQ-LC-MS-MS data (Fig. 5).

Cytotoxic evaluation of the n‑butanol fraction of T. nilotica 
flowers
The cytotoxic effect of the n-butanol fraction T. nilot-
ica flowers was investigated as a cytotoxicity SRB quick 
screening against MCF-7 and Huh-7 cells. The n-butanol 
fraction inhibited cancer cells in a dose-dependent 

manner since the activity increased with increasing the 
dose. For instance, at a concentration of 100  µg/ml, the 
viability percentage was 54.27% compared to 100% with 
10 µg/mL on MCF-7 with an  IC50 ˃100 µg/mL. However, 
the best effect was observed with Huh-7 where the per-
centage viability decreased from 51.89% at 10 µg/mL to 
7.22% at 100 µg/mL with an  IC50 = 37 µg/mL (Table 4).

Cell viability was assessed at five different concen-
trations (0.01, 0.1, 1, 10, and 100 µg/mL) using the SRB 
assay revealed that T. nilotica flowers n-butanol fraction 

Table 2 Metabolites identified from the n‑butanol fraction of T. nilotica flowers based on NMR and GNP analysis. No. = numbers of 
identified metabolites, Rt= retention time in mins, MF = molecular formula, ID = name of identified compounds, Ref. = references of 
identified compounds

No. Rt [M +  H]+ MF Fragmentation ID Ref.

1. 2.27 146.09 C6H11NO3 127.92, 99.91 Hydroxyproline; N‑Me [76]

2. 2.35 277.19 C13H8O7 259.04, 185.00, 144.75, 114.94 Urolithin M5 [77]

3. 3.11 132.19 C5H9NO3 113.94, 99.92, 85.93 Hydroxyproline [76]

4. 3.14 333.11 C18H20O6 315.00, 297.08, 252.98, 240.06 Tamarixoic acid [35]

5. 5.38 166.07 C9H8O3 148.98, 119.9361 Coumaric acid [34]

6. 14.90 160.19 C7H13NO3 142.99, 114.00, 86.91 Hydroxyproline; N,N‑Di‑Me/ betaine [76]

7. 15.86 238.32 C13H19NO3 221.02, 135.97 Tyrosine butyl ester GNPS

8. 16.11 635.43 C27H22O18 617.02, 465.08, 302.96 Gemin D [60]

9. 16.72 222.34 C13H19NO2 204.97, 165.93, 119.98 Phenylalanine, butyl ester GNPS

10. 17.03 464.25 C21H22O12 446.13, 301.00, 287.98 Kaempferide‑O‑hexoside [78]

11. 17.07 463.28 C22H22O12 286.97, 150.98 Kaempferol‑O‑glucuronide [79]

12. 17.21 171.33 C7H6O5 163.77, 152.97, 122.88 Gallic acid [80]

13. 17.30 195.24 C10H10O4 177.05 Ferulic acid [80]

14. 18.87 257.31 C16H32O2 239.02, 174.9, 92.92 Palmitic acid GNPS

15. 18.93 337.35  ‑ 319.12, 301.144, 283.20, 259.17, 149.05 Myricetin derivative [81]

16. 19.00 287.62 C15H10O6 269.01, 240.96, 213.06, 188.02, 152.97 Kaempferol [72]

17. 19.54 511.27  ‑ 493.07, 387.08, 303.04, 317.02, 152.93 Tamaridone‑O‑hexoside derivative [82]

18. 19.83 345.49 C18H16O7 237.17, 289.00, 270.90, 242.97, 152.95 Dihydroxy‑trimethoxyflavone/ Herbacetin‑trimethyl ether [83]

19. 19.97 209.28 C10H8O5 177.04 Trihydroxy‑methylcoumarin. [84]

20. 20.23 317.40 C16H12O7 301.96, 270.98, 164.98 O‑Methylquercetin (Tamarixetin) [78]

21. 20.81 495.31  ‑ 477.08, 463.05, 300.99, 286.98, 152.99 Kaempferide‑O‑hexoside derivative [85]

22. 21.03 496.37  ‑ 478.08, 301.98, 153.04 quercetin derivative [85]

23. 21.36 339.47 C15H14O7S 321.19, 303.22, 285.13, 251.15, 207.12 Trihydroxyflavan 7‑Sulfate [86]

24. 21.78 181.27 C9H8O4 162.98, 134.96 Caffeic acid [34]

25. 21.79 283.36 C18H34O2 265.13, 248.13 Oleic acid GNPS

26. 22.20 305.56 C15H12O7 287.08, 269.11, 259.10, 213.15 Dihydro‑quercetin [87]

27. 22.23 302.30 C15H10O7 286.97, 272.99, 228.09, 152.93, 138.89 Quercetin [72]

28. 22.75 301.41 C16H12O6 285.97, 271.98, 227.01, 18,806, 152.90, 138.91 Kaempferide [78]

29. 22.78 509.39  ‑ 477.08, 315.00, 301.00, 166.95 Kaempferol 4’,7‑dimethyl ether‑O‑hexoside derivative [88]

30. 22.92 331.41 C17H14O7 315.99, 299.02, 275.03, 178.95, 152.96 Tamaridone/ quercetin‑ dimethyl ether [34]

31. 24.60 321.46 C15H12O8 303.16, 285.19, 247.03, 222.05, 174.10 Dihydromyricetin [89]

32. 25.38 315.26 C17H14O6 300.00, 285.99, 272.02, 152.90 Kaempferol 4’,7‑dimethyl ether [34]

33. 25.39 316.41 301.01, 287.12, 273.02, 152.97 Quercetin derivative [90]

34. 27.00 282.28 C18H35NO 265.13, 247.13 Octadecenamide GNPS

35. 28.16 429.62  ‑ 317.06, 301.13, 270.21, 169.04 Tamarixetin derivative [30]
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possesses a dose-dependent cytotoxic effect with an 
 IC50 of 37  µg/mL with Huh-7 cell lines while it showed 
 IC50 > 100 µg/mL with MCF-7 cell lines (Fig. 6).

Discussion
One of the leading causes of death on the globe is can-
cer. Given their significant toxicity to cancer cells, natu-
ral products, and their secondary metabolites are highly 
significant for research into potential anticancer treat-
ments. Previous research found that several Tamarix 
species have displayed varying cytotoxic activities. Breast 
adenocarcinoma cells (MCF-7) were suppressed by the 
methanolic extract of T. aphylla in a concentration-
dependent manner [33]. Different extracts of T. senega-
lensis demonstrated anti-cancer effects in human liver 

(Huh-7) and lung (A-549) carcinoma cells [31]. T. gallica 
shoots, flowers, and leaves methanolic extracts were able 
to inhibit the proliferation of colon cancer (Caco-2) cells 
at concentrations of 50 and 100 g/mL [82]. Furthermore, 
T. articulata methanolic extract demonstrated promis-
ing antiproliferative activity against hepatocellular car-
cinoma [92], as well as against prostate cancer (LnCaP) 
cells’ motility and invasiveness in a dose-dependent man-
ner [93]. In this study, the n-butanol fraction of T. nilot-
ica flowers showed cytotoxic activity against MCF-7 and 
Huh-7 cells (Fig. 6) in a dose-dependent manner with a 
more promising effect against liver cancer cell Huh-7 
 (IC50 =  37  µg/mL). The optical microscope-stained 
images were recorded as shown in Fig. 7 comparing the 
cytotoxic effect of n-butanol fraction of T. nilotica flowers 

Fig. 3 Molecular network (showing clusters of metabolites of interest) based on tandem mass spectrometry data in the positive ionization mode 
of the n‑butanol fraction of T. nilotica flowers. Twenty metabolites have been identified as labeled in Fig. 3, green color indicating the number of 
compounds in Table 2, light blue nodes are compounds identified using GNPS databases, while the identified compounds using fragmentation 
matching have the pink color
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at a concentration of 10 and 100  µg/mL with compari-
son to (-ve control). Images clearly show the cytotoxic 
effect of the extract against MCF-7 and Huh-7 cell lines 
(Fig.  7C, E & F) where no morphological changes were 
observed on MCF-7 at conc. 10 µg/mL (Fig. 7B) as well as 
the negative control of both cell lines (Fig. 7A & D) while 
more potent effect was observed against Huh-7 (Fig. 7E 
& F). This confirms that the n-butanol fraction of T. nilot-
ica flowers possess cytotoxic effects which are clearer 
and more potent on Huh-7 cells over MCF-7 cells.

T.nilotica has been previously reported for promising 
cytotoxic activity against human colon (HCT-116) and 
breast (MCF-7) cancer cells [94], whereas ethyl acetate 
was active against lung cancer cell line with increased 
expression levels of p-53 and Bax whereas that of Bcl-2 
was decreased [36, 37], while flowers were effective and 
selective against liver cell carcinoma (Huh-7) [38].

The chemical investigation of various Tamarix spe-
cies was reported. Gallic acid, flavones, and flavonols 
were among the polyphenols found in this study that 
were recognized as compounds that had previously 

Table 3 The identified metabolites of the n‑butanol fraction of T. 
nilotica flowers exhibited at 1H‑NMR

Functional Groups 1H‑NMR (m, J in Hz)

M1 Un/saturated fatty acids
 18‑ CH3 0.9

 (CH2)n 1.2

 2‑CH2 1.6

 3‑ CH2 2.07

 allylic CH2 2.29

 Olefinic CH 5.33

Sugars
 M2 α‑glucose 5.18 (d, J = 3.8 Hz)

 M3 β‑Glucose 4.58 (d, J = 7.8 Hz)

 M4 sucrose 5.40 (d, J = 3.8 Hz), 4.17 (d, J = 8.5 Hz)

Organic acids
 M5 Succinic acid  2.56 (s)

Coumarins & flavonoids
Coumarins derivative 6.35, 7.60 (d, J = 15.8 Hz)

 Flavonoids derivative 6.2–8.23

Fig. 4 1H‑NMR spectrum exhibiting the identified metabolites in the n‑butanol fraction of T. nilotica flowers; primary metabolites i.e., fatty acids and 
sugars (M1‑M4) as well as organic acid (M5) at the aliphatic region δH 0.5—5.5 ppm as mentioned in Table 3
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been found in other species of Tamarix [34, 95]. For 
example, a study on the alcohol-soluble fraction of an 
aqueous extract of T. nilotica aerial parts collected from 
Egypt and Saudi Arabia was discussed by Sekkien A. 
et al. 2018 [30]. The study reported that the major com-
pounds in the Egyptian species extract were (iso)ferulic 
acid-3-sulphate, methyl ferulate sulfate, and coniferyl 
alcohol sulfate derivative. Moreover, this species exhib-
ited the presence of kaempferide, gallic acid, nilocitin, 
kaempferol dimethyl ether sulfate, tamarixetin, kaemp-
ferol, quercetin, methyl gallate methyl ether, kaemp-
ferol 3-O-β-glucuronide and 4ʹ-O-methyl quercetin 
3-O-β-hexoside which was following the identified 
compounds in our study [30]. Also, the tannin-iden-
tified compounds in our study as hirtellin B, gemin D, 
nilotinin D1, and tamarixinin A were following those 
reported in T. nilotica, T. pakistanica, T. tetrandra, and 
T. senegalensis by [56, 64, 68, 96]. These several identi-
fied polyphenolic compounds in this genus explain its 
widespread biological activity as stated in [11].

The phytochemical analysis of the n-butanol extract 
of T. nilotica flowers using LC-MS/MS analysis reveals 
the identification of various phenolic compounds 
such as gallic acid, caffeic acid, ferulic acid, luteolin, 
kaempferol, quercetin, kaempferol-3-O-glucuronide, 
tamarixetin, besides various galloyl and gallate moie-
ties. Fragments at m/z [M-H-152]− and [M-H-170] 
– denoted the losses of galloyl and gallate moieties 

respectively, eliminated by gallotannins or galloylated 
esters [60]. Tannins were previously isolated and iden-
tified in T. nilotica and have shown potent cytotoxic 
effects with high tumor specificity [68]. The promis-
ing cytotoxic effect against liver carcinoma can be 
well correlated with the tentatively identified phenolic 
compounds where caffeic and gallic acid was reported 
to reduce the growth of MCF-7 breast cancer cells and 
altered the expression of apoptotic genes [97], feru-
lic acid also promotes apoptosis in cancer cell lines 
MCF-7 and HepG-2 and activated the caspase-8 and 
− 9 pathways, has cytotoxic action and [98]. while 
nilocitin showed a G2/M and S cell cycle arrest as a 
consequence of the G1 phase [99], furthermore, the 
flavonoid hispidulin (4’,5,7-trihydroxy-6-methoxyfla-
vone) causes ERS-mediated apoptosis in hepatocellular 
carcinoma cells by stimulating the AMPK/mTOR path-
way, [100]. HepG-2 cells were more vulnerable to his-
pidulin-mediated cell death than immortalized L929 
fibroblasts, indicating that this substance has a distinct 
level of toxicity in tumor-related cell lines than normal 
cell lines [101]. When kaempferol was administered 
to the human breast cancer cell line MCF-7, it sup-
pressed the expression of PLK-1, a protein-like kinase 
that has been shown to control mitotic development 
and to be elevated in several human cancers. Kaemp-
ferol’s anticancer activity is mediated via inhibition 
of the EGFR-related Src, ERK1/2, and AKT pathways, 
and it may be a powerful inhibitor of pancreatic cancer 
cells [102]. Luteolin is a very significant flavonoid that 
is present in many foods. It has several health bene-
fits, including its ability to prevent cancer, induce cell 
cycle arrest and apoptosis in some human cancer cells, 
and enhance the antitumor effects of 5-FU on Bel7402 
and HepG-2 cells. These effects may be connected to 
apoptosis and the control of 5-FU metabolism [103–
105]. The dietary flavonoid quercetin, which is found 
in berries, demonstrated high cytotoxicity it prevented 
HepG-2 cancer cells from proliferating and surviving 

Fig. 5 1H‑NMR spectrum exhibiting the identified metabolites in the n‑butanol fraction of T. nilotica flowers; in aromatic region δH 5.5—8.2 ppm 
prescribing coumarins and flavonoids

Table 4 Cytotoxicity SRB quick screening results of the n‑ 
butanol fraction of T. nilotica flowers

Tested sample concentration Cell viability %

Cancer Cell lines

Huh‑7 MCF‑7

10 µg/mL 51.89 100

100 µg/mL 7.22 54.27
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while inducing apoptosis by increasing the expression 
of p53 and BAX [106, 107].

Our findings imply that the T. nilotica flower’s 
n-butanol fraction has the potential to be a promising 
cytotoxic candidate against Huh-7 cancer cells.

Conclusion
This study documents a detailed metabolites profiling 
for the unexplored n-butanol fraction of Tamarix nilot-
ica flowers. A total of 39 constituents including tannins, 
flavonoids, and phenolic acids, were tentatively identi-
fied. The in  vitro cytotoxicity study revealed significant 
cytotoxic action towards the hepatocyte-derived cellular 

carcinoma cell lines, human liver (Huh-7). However, fur-
ther studies are necessary to correlate this activity to the 
identified compounds to demonstrate T.nilotica as a pro-
spective drug candidate that inhibits cancer.
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