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Abstract 

Background Panax quinquefolius saponin (PQS) is the main active component of Panax quinquefolius. Emerging evi-
dence suggests that PQS exerts beneficial effects against cardiovascular diseases. However, the role and mechanism 
of PQS in vascular calcification are not unclear. The present study investigated the effects of PQS on the calcification of 
vascular smooth muscle cell (VSMCs).

Methods The present study used calcification medium containing 3 mM inorganic phosphate (Pi) to induce rat 
VSMCs calcification. We investigated the effects of PQS on VSMCs calcification using alizarin red staining and alkaline 
phosphatase (ALP) activity assays. The intracellular reactive oxygen species (ROS) levels and the transcriptional activ-
ity of nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined. The mRNA and protein expression levels of 
Nrf2, the antioxidant gene heme oxygenase-1 (HO-1), osteogenic markers, including runt-related transcription factor 
2 (Runx2) and bone morphogenetic protein 2 (BMP2), and Kelch-like ECH-associated protein 1 (Keap1) were also 
measured.

Results Treatment with Pi significantly increased intracellular calcium deposition and ALP activity, which were sup-
pressed by PQS in a concentration-dependent manner. During VSMCs calcification, PQS inhibited the mRNA and 
protein expression of Runx2 and BMP2. PQS treatment reduced intracellular ROS production and significantly upregu-
lated Nrf2 transcriptional activity and the expression of Nrf2 and its target antioxidant gene HO-1. PQS suppressed the 
Pi-induced protein expression of Keap1, which is an endogenous inhibitor of Nrf2. Keap1 siRNA treatment induced 
Nrf2 expression and downregulated Runx2 expression in the presence of Pi and PQS.

Conclusion Taken together, these findings suggest that PQS could effectively inhibit VSMCs calcification by amelio-
rating oxidative stress and regulating osteogenic genes via the promotion of Nrf2 expression.
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Background
Vascular calcification is a major cause of increasing 
mortality in patients with diabetes, atherosclerosis, 
hypertension, and chronic kidney disease (CKD) [1, 
2]. The prevalence of vascular calcification increases 
with age, and it is approximately 60% for individu-
als > 70  years of age [3, 4]. Cumulative evidence sug-
gests that vascular calcification is a strictly regulated 
process that is similar to bone formation [5, 6]. Its 
characteristics include the deposition of calcium phos-
phate in arteries, the phenotypic transformation of 
vascular smooth muscle cell (VSMCs) into osteoblast-
like cells, and the expression of bone-related proteins 
[7, 8]. Increased stiffness and decreased elastic recoil in 
the aortic wall lead to reduced coronary perfusion and 
concentric ventricular hypertrophy [9]. However, the 
underlying mechanisms of vascular calcification have 
not been established.

Oxidative stress is a critical regulator of many age-
related diseases, including vascular calcification [10]. 
The production of reactive oxygen species (ROS) and 
the oxidative modification of various biomolecules 
induce the transformation of VSMCs from the contrac-
tile type to the osteogenic type, which is accompanied 
by calcification [7]. For example, hydrogen peroxide 
 (H2O2) is a classic oxidant stressor that promotes vas-
cular cell calcification by increasing the expression of 
the osteogenic transcription factor runt-related tran-
scription factor 2 (Runx2) [11]. The reduction in ROS by 
4-hydroxy-2,2,6,6,-tetramethyl piperidinoxyl (tempol), a 
membrane-permeable antioxidant, blocks VSMCs differ-
entiation into osteoblast-like cells [12]. The transcription 
factor nuclear factor-erythroid 2-related factor 2 (Nrf2), 
which belongs to the Cap’n’collar/basic region leucine 
zipper (CNC-bZIP) transcription factor family, plays a 
negative role in VSMCs calcification by inhibiting oxida-
tive stress and interacting with the osteogenic transcrip-
tion factor Runx2 [13–15].

Panax quinquefolius saponin (PQS) is the main active 
component of Panax quinquefolius. Emerging evidence 
suggests that PQS exerts pleiotropic beneficial effects 
on cardiovascular diseases and diabetes, and its protec-
tive effects may be mostly attributable to its antioxidant 
effects [16–18]. One previous study found that PQS 
protected the myocardium against myocardial infarc-
tion by reducing oxidative stress injury and suppress-
ing excessive endoplasmic reticulum stress [19]. Panax 
quinquefolius also inhibited oxidative stress-induced 
cardiomyocyte death by activating the Nrf2 signaling 
pathway [20]. However, whether PQS prevents VSMCs 
calcification is not known. Therefore, the present study 
tested the hypothesis that PQS blocked VSMCs calcifica-
tion via activation of Nrf2.

Methods
Materials and reagents
Standardized PQS was supplied by Jilin Yisheng Phar-
maceutical Co., Ltd. (Jilin Province, China). Dulbecco’s 
modified Eagle’s medium (DMEM) and fetal bovine 
serum (FBS) were purchased from Gibco (Grand Island, 
NY, USA). TRIzol reagent and a Prime Script RT Rea-
gent Kit were purchased from Invitrogen (Carlsbad, 
CA, USA). Alizarin red S was obtained from Sigma 
(cat. no. A5533, St. Louis, MO, USA). A Dual-Lucif-
erase Reporter Assay System was purchased from 
Promega (cat. no. E1910, WI, USA). Rabbit polyclonal 
anti-Nrf2 (cat. no. sc-13032, H300; 1:500), anti-β-actin 
(cat. no. sc-47778; 1:1000) and goat anti-rabbit IgG (cat. 
no. sc-2004; 1:5000) were purchased from Santa Cruz 
(Dallas, TX, USA). Primary antibodies against proteins 
including Runx2 (cat. no. ab23981; 1:1000), bone mor-
phogenetic protein 2 (BMP2) (cat. no. ab14933, H300; 
1:1000), SM22α (cat. no. ab14106; 1:1000) and heme 
oxygenase-1 (HO-1) (cat. no. ab13243; 1:2000) were 
purchased from Abcam (Cambridge, MA, USA).

Cell isolation and identification
Aortic smooth muscle cells were separated from the 
thoracic aorta of 6-week-old male Sprague–Daw-
ley (SD) rats. Each rat was anesthetized via abdomi-
nal injection of a 1% sodium pentobarbital solution 
(10  ml/kg), and the thoracic aorta was removed and 
minced into small pieces (1–2  mm2). The pieces were 
transferred to digestive enzymes mixing 0.2% trypsin 
and 0.1% collagenase I solution at 37  °C for 20  min 
with shaking. The process of digestion was terminated 
by adding 5  ml 10% fetal bovine serum (FBS). The 
cells attached to the dish were collected and cultured 
in DMEM supplemented with 10% FBS and antibiot-
ics in a 95% humidified-air incubator at 37  °C with 5% 
 CO2. VSMCs were identified by positive staining of 
α-smooth muscle actin and used for the experiments 
between passages 5–8.

Calcification induction and cell treatment
VSMCs were seeded in culture dishes and maintained in 
DMEM with 10% FBS. After confluency, cells were incu-
bated in calcification medium containing 3  mM Pi for 
6 days to induce calcification. The first day of culture in 
the calcification medium was defined as day 0. PQS was 
added to the culture medium at different concentrations 
during the calcification period. The treatment medium 
was changed every 2 days. Cells cultured in DMEM sup-
plemented with 10% FBS without Pi and PQS were used 
as the blank group.
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Cell viability assay
Cell viability was determined using an MTS assay kit 
(Promega, WI, USA) according to the manufacturer’s 
instructions. VSMCs were seeded 96-well plates and 
incubated for 24  h. The culture medium was removed 
and replaced with DMEM with or without PQS at dif-
ferent concentrations (0, 25, 50, 100 and 200 μg/ml) for 
24 h. Then, the medium was removed, followed by incu-
bation with 100  μl of fresh 10% FBS medium and 20  μl 
of MTS cell viability reagents. After incubation at 37  °C 
for 1 h, the absorbance at 490 nm was measured using a 
multiwell spectrophotometer. All values were normalized 
to the control group.

Alizarin red staining
Alizarin red staining was used for the quantitative detec-
tion of calcium deposition in VSMCs. Briefly, after 
treatment for 6  days, the cells were washed with phos-
phate-buffered saline (PBS) 3 times, fixed in 4% neutral 
formalin for 30  min and stained with 1% alizarin red 
(pH 4.2) for 5 min at room temperature. The cells were 
washed with PBS 3 times to remove nonspecific staining 
and the cells were photographed under light microscopy.

Alkaline phosphatase (ALP) activity assay
To quantify intracellular calcium deposition, ALP activity 
was determined using an Alkaline Phosphatase Assay Kit 
(cat. no. P0321M, Beyotime Biotechnology, Hangzhou, 
China) in accordance with the manufacturer’s instruc-
tions. Briefly, lysis buffer (20 mM Tris, pH 7.5; 150 mM 
NaCl; 1% Triton X-100) was added to the cells, which 
were incubated for 30  min at 4  °C and centrifuged at 
111.8 rcf for 10 min. The supernatants were transferred 
to a 96-well plate and incubated with para-nitrophenyl 
phosphate (pNPP) for 10 min at 37 °C. The stop solution 
was added to the reaction mixture, and ALP activity was 
determined using a microplate reader at an absorbance 
wavelength of 405  nm (BioTek Synergy, VT, USA). The 
amount of total protein in the lysate was quantified using 
a bicinchoninic acid (BCA) assay kit (Sigma, MO, USA). 
The ALP activity was normalized to the protein content. 
The specific activity to produce 1 nmol of p-nitrophenol 
was defined as one unit, and the values of ALP activities 
are expressed as units/mg protein.

Reactive oxygen species (ROS) assay
Intracellular ROS levels were measured using a ROS 
Assay Kit (cat. no. S0033M, Beyotime Biotechnol-
ogy, Hangzhou, China) according to the instructions. 
VSMCs were incubated with Pi (3 mM) in the presence 
or absence of PQS for 48 h and then treated with 10 μM 
DCFH-DA at 37  °C for 20  min. The cells were washed 

with DMEM 3 times, and the fluorescence intensity of 
the cell lysates was measured using a fluorescence micro-
plate reader at an excitation wavelength of 488 nm and an 
emission wavelength of 525 nm. The results are expressed 
as a percentage of the control value.

Nrf2 transcriptional reporter assay
An Nrf2 transcriptional reporter assay was performed 
using a Dual-Luciferase Reporter Assay System. Briefly, 
VSMCs were transfected with ARE-luc (firefly luciferase) 
plasmids containing the Nrf2 reporter gene with Lipo-
fectamine 2000. After 48 h of transfection, the luciferase 
activity was determined using a Dual-Glo Luciferase 
Assay System. The pRL-TK-luc (Renilla luciferase) plas-
mids were used as an internal control, and Nrf2 tran-
scriptional activity was expressed by normalizing the 
luciferase values to the empty vector control values.

Small interfering RNAs transfection
The small interfering RNA (siRNA) for Nrf2, Keap1 and 
the negative control were purchased from GenePharma 
(Shanghai, China). Cells were transiently transfected with 
siRNAs using the Lipofectamine RNAiMAX (Invitrogen) 
according to the manufacturer’s instructions. After 48 h, 
cells were cultured in calcification medium with or with-
out PQS and utilized for the further experiments.

Quantitative real‑time PCR (RT‑PCR)
According to the manufacturer’s instructions, total RNA 
from cultured cells was isolated with TRIzol reagent and 
used to synthesize cDNA with a reverse transcription 
kit. A SYBR Premix Ex Taq Kit (Takara, Dalian, China) 
was used to perform RT-PCR according to the manu-
facturer’s protocol. The cycling conditions used were as 
follows: predenaturation at 95 °C for 30 s followed by 40 
cycles of 95 °C for 5 s and 60 °C for 34 s. The amplifica-
tion of mRNA was analyzed using the  2−ΔΔCt method. 
The expression levels of target genes were normalized to 
the mRNA levels of the internal reference β-actin. The 
primer sequences of the genes are listed in Table 1.

Western blot analysis
Total cell protein was extracted in RIPA lysis buffer con-
taining protease inhibitors, and the concentration of pro-
tein was quantified using a BCA assay kit according to 
the manufacturer’s protocol. Equal amounts of protein 
were separated by 10% SDS-PAGE and transferred to 
PVDF membranes, which were blocked in 5% milk for 2 h 
and incubated with specific primary antibodies overnight 
at 4  °C. After washing 3 times in TBST, the membranes 
were incubated with the appropriate secondary antibod-
ies at room temperature for 1 h. The protein bands were 
visualized with enhanced chemiluminescence reagent.
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Statistical analysis
Unless otherwise indicated, data were obtained from at 
least 3 separate experiments performed in triplicate. 
Measurement data are presented as the mean ± stand-
ard deviation (SD). Analyses were performed using SPSS 
17.0 statistical software (IBM Corporation, Armonk, 
NY, USA). Statistical significance was determined using 
one-way ANOVA followed by Tukey’s t test. A value of 
p < 0.05 indicated statistical significance.

Results
PQS prevents high phosphate‑induced vascular smooth 
muscle cell calcification
We first investigated the toxicity of PQS and Pi in 
VSMCs. Cells were treated with PQS at various concen-
trations (0, 25, 50, 100 and 200  μg/ml) for 24  h. After 
treatment, cell viability was determined by MTS assay. 
As shown in Fig.  1A, in the PQS alone groups, 200  μg/
ml PQS decreased cell viability by 39.82% (**p < 0.01). 
VSMCs exposed to 200 μg/ml PQS and 3 mM Pi medium 
exhibited a 47.35% (##p < 0.01) decrease compared with 
that of Pi treatment cells. Cell viability was not affected 
by 25, 50 and 100  μg/ml PQS with or without Pi treat-
ment. The results of the MTS assay demonstrated that 
Pi and PQS alone or in combination did not impair cell 
viability up to a concentration of 100 μg/ml.

To examine the effect of PQS on calcification in 
VSMCs, cells were incubated in calcification medium 
with increasing concentrations of PQS for 6  days. Aliz-
arin red staining revealed no calcium deposition in 
the absence of Pi, but incubation with 3  mM Pi signifi-
cantly increased the calcium content (Fig.  1B). Accord-
ing to the quantitative analysis, the calcium levels in the 
PQS groups were reduced by 3.33%, 24.94% and 65.35% 
(#p < 0.05) in 25, 50 and 100 μg/ml PQS groups, respec-
tively, compared with the Pi group (Fig.  1C). Although 
calcium deposition was inhibited by 200 μg/ml PQS, cell 
toxicity was also increased, and cell calcification was fur-
ther reduced.

Table 1 Primer sequences for real-time PCR

Nrf2 Nuclear factor-erythroid 2-related factor 2, HO-1 Heme oxygenase-1, Runx2 
Runt-related transcription factor 2, BMP2 Bone morphogenetic protein 2, SM22α 
Smooth muscle 22 alpha

Genes Sequence (5’‑3’) Size (bp) Gene ID

Nrf2 GCT ATT TTC CAT TCC CGA 109 NM_031789

ATT GCT GTC CAT CTC TGT CAG 

HO‑1 AGA GTT TCT TCG CCA GAG G 127 NM_012580

GAG TGT GAG GAC CCA TCG 

Runx2 TCG GAA AGG GAC GAGAG 101 NM_001278483

TTC AAA CGC ATA CCT GCA T

BMP2 AAG CCA GGT GTC TCC AAG 209 NM_017178

AAG TCC ACA TAC AAA GGG TG

SM22α CTG TAA TGG CTT TGG GCA GT 97 NM_031549

CTC TTA TGC TCC TGG GCT TTC 

β‑actin ATG GTG GTA TGG GTC AGA AGG 264 NM_031144

TGG CTG GGG TGT TGA AGG TC

Fig. 1 PQS prevents high phosphate-induced vascular smooth muscle cell calcification. VSMCs were treated with increasing concentrations of 
PQS (0, 25, 50, and 100 μg/ml) in the presence of calcification medium containing 3 mM Pi for 6 days. A Cell viability was measured using MTS assay 
following treatment of VSMCs with increasing concentrations of PQS for 24 h. B Calcium deposition was assessed using alizarin red staining. Scale 
bar: 100 μm. C Quantification of alizarin red staining. D Quantification of calcium deposition using ALP activity assay. The values are presented as the 
mean ± SD (n = 3). *p < 0.05 or **p < 0.01 vs. blank, and #p < 0.05 or ##p < 0.01 vs. Pi control or PQS control
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Similar to the alizarin red staining results, PQS signifi-
cantly decreased ALP activity in a concentration-depend-
ent manner (Fig. 1D). Compared to the Pi control, 25, 50 
and 100  μg/ml PQS decreased secreted ALP activity by 
29.25%, 51.71% (#p < 0.05) and 70.47% (#p < 0.05), respec-
tively, and the most effective concentration was 100 μg/
ml. Therefore, PQS concentrations between 25  μg/ml 
and 100  μg/ml were used to treat cells in subsequent 
experiments.

PQS inhibits high phosphate‑induced expression of bone 
formation markers
To investigate the effect of PQS on VSMCs differentia-
tion, the genes associated with calcification were exam-
ined using RT‒PCR and Western blot analysis. Following 
intervention with increasing concentrations of PQS for 
6  days, the mRNA expression of the bone formation 
markers Runx2 and BMP2 was significantly inhibited. 
Compared to the Pi control group, Runx2 and BMP2 
mRNA levels were decreased by 72.46% (#p < 0.05) and 
62.82% (##p < 0.01), respectively, in the 100  μg/ml PQS 
group. Conversely, the mRNA expression of SM22α, a 
specific marker of smooth muscle cell, was markedly 
increased by 0.46, 2.04 and 2.28-fold (#p < 0.05) in the 
PQS treatment groups. PQS (100  μg/ml) maintained 
SM22α expression up to the levels of the blank group 

(Fig.  2A). Similar to the mRNA expression changes, 
100  μg/ml PQS decreased the protein expression levels 
of Runx2 and BMP2 by 92.98% (#p < 0.05) and 86.21% 
(#p < 0.05), respectively, and the levels of SM22α were 
increased by 3.48-fold compared with the Pi control 
group (#p < 0.05) (Fig. 2B).

We further examined the time course responses of 
Runx2, BMP2 and SM22α during calcification. VSMCs 
were treated in high-phosphate medium with PQS 
(100  μg/ml) and harvested at the indicated stages (d0, 
d2, d4, and d6). In contrast to the Pi control group at 
the same time point, the PQS treatment group exhib-
ited inhibition of the mRNA expression of Runx2 and 
BMP2 by 54.45% (&&p < 0.01) and 63.52% (&&p < 0.01), 
respectively, and upregulation of SM22α by 1.46-fold 
(&&p < 0.01) on d6 (Fig. 3A). The protein expression lev-
els of Runx2, BMP2, and SM22α were consistent with the 
mRNA expression levels (Fig. 3B and C).

Meanwhile, to identify the antioxidant signals involved 
in calcification, we investigated the effects of Pi and PQS 
on the activation of Nrf2, a critical regulator of antioxi-
dant responses, during different calcification periods. 
Western blot analyses and quantification of the bands 
showed that 3 mM Pi decreased the protein level of Nrf2 
by 66.07% (*p < 0.05), whereas PQS further increased Nrf2 
protein expression by 1.8-fold (##p < 0.01) after inducing 

Fig. 2 PQS inhibits high phosphate-induced expression of calcification markers. VSMCs were treated with various concentrations of PQS (0, 25, 
50, and 100 μg/ml) in the presence of calcification medium containing 3 mM Pi for 6 days. The expression of osteogenic marker genes Runx2 and 
BMP2, and VSMCs marker gene SM22α was determined using RT-PCR (A) and Western blot analysis (B). The relative values of protein expression 
were normalized to β-actin. *p < 0.05 or **p < 0.01 vs. blank, and #p < 0.05 or ##p < 0.01 vs. Pi control
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calcification for 6  days (Fig.  3B and C). These findings 
suggested that PQS attenuated Pi-induced calcification 
by reducing calcification marker expression in VSMCs.

PQS attenuates high phosphate‑induced vascular smooth 
muscle cell calcification by activating Nrf2
To investigate whether oxidative stress is involved in vas-
cular calcification, we observed the effect of PQS on ROS 
production. As shown in Fig.  4A, ROS production was 
significantly increased by 4.37-fold (**p < 0.01) in the pres-
ence of high phosphate, but this effect was profoundly 
reduced by 74.75% (##p < 0.01)after 100 μg/ml PQS treat-
ment. These results suggest that PQS ameliorates oxida-
tive stress during VSMCs calcification.

Nrf2 plays an important role in inhibiting ROS gen-
eration. Next, we examined whether PQS treatment 
alone activated Nrf2 in VSMCs. Compared to the blank 
group, Nrf2 transcriptional activity was inhibited in the 
Pi-treated group. After VSMCs were incubated with vari-
ous concentrations of PQS for 48 h, Nrf2 transcriptional 

activity was activated in a dose-dependent manner, and 
maximal activation was achieved at a dose of 100 µg/ml 
(Fig. 4B). Therefore, we examined the effects of PQS on 
the expression of Nrf2 and its target antioxidant gene 
HO-1 using PQS at 100  µg/ml. As shown in Fig.  4C, 
Pi strongly inhibited the mRNA expression of Nrf2 
by 48.01% (*p < 0.05) and HO-1 by 47.30% (*p < 0.05), 
which were increased by 4.10- (#p < 0.05) and 4.58 -fold 
(#p < 0.05), respectively, in the PQS treatment group com-
pared to the Pi group. These protein levels are compara-
ble with those of mRNA expression. Compared with the 
Pi group, PQS increased Nrf2 and HO-1 protein levels 
by 8.81- (#p < 0.05) and 6.51-fold (##p < 0.01), respectively 
(Fig.  4D). These results suggested that PQS treatment 
reduced ROS production and activated Nrf2 in VSMCs.

To further study the role of Nrf2 in high phosphate-
induced vascular calcification, we inhibited Nrf2 
expression by transfecting cells with a small interfer-
ing RNA against Nrf2 (siNrf2). As shown in Fig.  4E, 
western blotting demonstrated that the protein level of 
Runx2 was substantially increased by 0.73- (#p < 0.05) 

Fig. 3 PQS inhibits high phosphate-induced expression of calcification markers and Nrf2 during calcification period. VSMCs were induced to calcify 
with or without 100 μg/ml PQS and harvested at different times (d0, d2, d4 and d6). A The mRNA expression of osteogenic marker genes during 
calcification was determined using RT-PCR. B The protein expression of osteogenic marker genes and Nrf2 during calcification was determined 
using Western blot analysis. The relative values of protein expression were normalized to β-actin. *p < 0.05 or **p < 0.01 vs. Pi control on d0, #p < 0.05 
or ##p < 0.01 vs. Pi + PQS group on d0, and &p < 0.05 or &&p < 0.01 vs. Pi control on d0, d2, d4 and d6. The values are presented as the means ± SD 
(n = 3)
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and by 3.47 -fold (&p < 0.05) in response to 3 mM Pi in 
the presence of siNrf2 treatment compared with that 
of the Pi control and PQS groups. The inhibitory effect 
of PQS on calcification was decreased after Nrf2 gene 
silencing. Alizarin red staining (Fig.  4F) revealed that 
siNrf2-treated cells showed significantly more mineral 
deposition after Pi stimulation for 6  days than scram-
ble-transfected cells, which further suggested that 
VSMCs calcification was aggravated in the absence of 
Nrf2. Briefly, our results demonstrated that the inhibi-
tion of calcification by PQS was mediated via the acti-
vation of Nrf2.

PQS regulates the Keap1/Nrf2 pathway in high 
phosphate‑induced vascular smooth muscle cell 
calcification
To gain further insight into the mechanisms by which 
PQS inhibits VSMCs calcification, we investigated 

whether PQS activates Nrf2 expression by regulating 
the Keap1-Nrf2 system. Compared to the Pi group, 
PQS suppressed Pi-induced Keap1 protein expression 
by 22.83% (*p < 0.05), while Pi showed no inhibitory 
effect on Keap1 (Fig. 5A). Transfection of Keap1 siRNA 
in the presence of Pi and PQS increased the protein 
expression of Nrf2 by 1.07-fold (#p < 0.05) and signifi-
cantly inhibited Runx2 expression by 81.08% (#p < 0.05) 
(Fig.  5B). These results indicated that the inhibitory 
effect of PQS on VSMCs calcification was mediated by 
regulation of the Keap1/Nrf2 pathway, although other 
pathways could not be excluded.

Discussion
In the present study, we investigated the effects of PQS 
on VSMCs calcification in  vitro and the underlying 
mechanisms. We demonstrated that PQS effectively 
prevented the Pi-induced mineralization process and 

Fig. 4 PQS attenuates high phosphate-induced vascular smooth muscle cell calcification by activating Nrf2. A VSMCs were incubated with 3 mM 
P in the presence or absence of PQS for 48 h, and intracellular ROS levels were determined as the mean fluorescence intensity. *p < 0.05 or **p < 0.01 
vs. blank, and ##p < 0.01 vs. Pi control. B VSMCs were transfected with the Nrf2 transcription reporter gene ARE-luc and the internal control gene 
pRL-TK-luc then treated with various concentrations of PQS for 48 h. Nrf2 transcriptional activity was assessed using dual luciferase assay. *p < 0.05 
vs. blank, and #p < 0.05 vs. Pi control. C and D Cells were treated with calcification medium containing 3 mM Pi for 6 days. The expression of Nrf2 
and HO-1 was determined using RT-PCR and Western blot analysis. *p < 0.05 vs. blank, and #p < 0.05 or ##p < 0.01 vs. Pi control. (E and F) VSMCs were 
transfected with Nrf2-siRNA or control siRNA for 48 h, and further incubated with or without PQS in calcification medium for 6 days. The expression 
of Runx2, SM22α and Nrf2 was determined using Western blot analysis. Calcium deposition was visualized by alizarin red staining. Scale bar: 200 μm. 
The values are presented as the means ± SD (n = 3). *p < 0.05 or **p < 0.01 vs. blank, #p < 0.05 vs. Pi control, and &p < 0.05 vs. Pi + PQS
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inhibited the expression of osteogenic marker genes by 
reducing oxidative stress, activating the expression of 
Nrf2 and decreasing the protein level of Keap1. Blockade 
of Nrf2 partially abolished the beneficial effects of PQS 
on calcification. Taken together, our findings suggest 
that PQS inhibits VSMCs calcification and is associated 
with attenuation of oxidative stress via the Nrf2/Keap1 
pathway.

Inorganic phosphate is essential for many cellular pro-
cesses, and elevated serum phosphorus plays an impor-
tant role in the progression of vascular calcification [21]. 
In this study, high concentrations of Pi were used to 
induce VSMCs calcification, which is morphologically 
similar to that observed in the calcified human aortic 
media and heart valves [22, 23]. The underlying molecu-
lar mechanisms might be related to VSMCs phenotypic 
transition mediated by phosphate cotranspor Pit-1 and 
apoptosis mediated by a secreted prote Growth arrest-
specific gene 6 (Gas6) [24, 25]. Oxidative stress is caused 
by ROS generation that exceeds local antioxidant capac-
ity. Accumulating studies have demonstrated that oxida-
tive stress is involved in many of the molecular events of 
vascular calcification [26–28]. For example, selenite pre-
vents vascular calcification by inhibiting oxidative stress-
induced activation of the phosphatidylinositol 3-kinase 
(PI3K)/AKT and extracellular regulated kinase (ERK) 
signaling pathways and endoplasmic reticulum stress, 
which leads to decreased osteoblastic differentiation and 

apoptosis of VSMCs [26]. The inhibition of dynamin-
related protein 1 (DRP1), which is a key regulator of mito-
chondrial fission, attenuates oxidative stress-mediated 
mitochondrial dysfunction, matrix mineralization, and 
cytoskeletal rearrangement, which reduces cardiovascu-
lar calcification [27]. Quercetin attenuates VSMCs apop-
tosis and calcification by inhibiting oxidative stress and 
decreasing mitochondrial fission [28]. In the presence 
of high Pi concentrations, ROS homeostasis is imbal-
anced, and overproduction of ROS leads to a cell apopto-
sis cascade and eventually different vascular pathologies, 
including VSMCs osteochondrogenic transdifferentia-
tion, inflammation, and extracellular matrix remodeling 
[29, 30]. We found that PQS treatment reduced the pro-
duction of ROS and vascular calcification caused by Pi in 
a dose-dependent manner. This result suggests that PQS 
protects VSMCs against oxidative injury during the pro-
cess of calcification.

Nrf2, a master transcription factor, suppresses oxida-
tive stress by controlling the expression of numerous 
antioxidant and detoxification genes, including HO-1, 
glutathione (GSH), and thioredoxin (TXN) [31]. Under 
normal conditions, Nrf2 binds to Keap1, which is an 
important regulator of the ubiquitylation and degradation 
of Nrf2. Under perturbed conditions such as oxidative 
stress, Keap1 is inactivated, which results in Nrf2 disso-
ciation and nuclear translocation [32]. In summary, Nrf2 
decreases intracellular ROS levels through its antioxidant 

Fig. 5 PQS regulates the Keap1/Nrf2 pathway during high phosphate-induced vascular smooth muscle cell calcification. A VSMCs were treated 
with calcification medium containing 3 mM Pi for 6 days. The protein expression of Keap1 was determined using Western blot analysis. #p < 0.05 
vs. Pi control. B VSMCs were transfected with Keap1 siRNA or control siRNA and further incubated with PQS in calcification medium for 6 days. The 
protein expression of Keap1, Nrf2 and the osteogenic marker Runx2 was determined using Western blot analysis. The values are presented as the 
means ± SD (n = 3). *p < 0.05 or **p < 0.01 vs. Ctrl, #p < 0.05 vs. si-Ctrl
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activity and plays a fundamental role in maintaining cel-
lular redox homeostasis. According to the results of 
previous studies, activation of Nrf2 may be beneficial 
to attenuate VSMCs calcification [33–35]. Alpha-lipoic 
acid, an Nrf2 activator, attenuates calcification in VSMCs 
and mice by restoring mitochondrial function and the 
intracellular redox state via its antioxidant potential [36]. 
Dimethyl fumarate (DMF) stimulates Nrf2 activity to 
attenuate VSMCs calcification by inhibiting osteogenic 
genes [15]. Our data revealed that the expression levels of 
Nrf2 and HO-1 were significantly increased after 6 days 
of stimulation by PQS, which suggested that Nrf2 is criti-
cally involved in the development of VSMCs calcification. 
Nrf2 knockdown by siRNA increased calcium deposition, 
reversed the expression of Runx2 and suppressed the 
inhibitory effect of PQS on calcification in VSMCs. The 
finding that PQS inhibits VSMCs calcification by activat-
ing Nrf2 and suppressing oxidative stress establishes a 
direct mechanistic link between PQS-mediated vascular 
protective effects and antioxidative activity. Sheng et  al. 
discovered that the activation of the Nrf2-ARE signal-
ing pathway may inhibit vascular calcification via the 
suppression of Runx2 and BMP2 [37]. Our results are 
in accordance with other findings that the expression of 
osteogenic marker genes, including Runx2 and BMP2, is 
highly correlated with Nrf2 levels during VSMCs calcifi-
cation. Keap1 plays a critical role in the inhibition of Nrf2 
activity. PQS inhibited Keap1 expression, which might 
be the mechanism of elevated Nrf2 expression. However, 
Nrf2 activity is also regulated via Keap1-independent or 
other pathways, including the βTrCP-CUL1 complex, the 
WD40 repeat-containing protein 23 (WDR23) complex, 
and P62 transcription [38–40]. Future studies should 
focus on delineating other signaling pathways, especially 
those closely correlated with cell apoptosis and inflam-
mation in ginseng.

Panax quinquefolius, also called American ginseng in 
Asia, is native to the United States and Canada [41]. It 
is an important herb that has been widely used to pre-
vent and treat diseases for hundreds of years [42]. PQS 
exerts protective effects against cardiovascular diseases 
by attenuating oxidative stress injury, protecting ischemic 
and reperfused myocardial tissue, increasing energy stor-
age in the myocardium, reducing myocardial apoptosis, 
and improving ventricular reconstruction [20, 43, 44]. 
Rb1, Rg1, and Rb2 are the main ginsenosides in ginseng 
that exhibit a remarkable antioxidant effect via the activa-
tion of the Nrf2 pathway [45–48]. In addition, Sun et al. 
reported that ginsenoside Rb3 protects cardiomyocytes 
against hypoxia/reoxygenation-induced oxidative stress 
by activating the antioxidation signaling pathway of 
PERK/Nrf2/HMOX1 [49]. PQS treatment significantly 
attenuated the elevation of malonyldialdehyde (MDA) 

and superoxide dismutase (SOD) induced by intermit-
tent high glucose in human umbilical vein endothelial 
cell (HUVECs) through the phosphatidylinositol 3-kinase 
kinase (PI3K)/Akt/GSK-3β pathway [50]. All these stud-
ies demonstrate that the Nrf2 pathway is considered a key 
molecular mechanism by which PQS attenuates oxidative 
stress injury in many organs and tissues. Unfortunately, 
so far there is no data about PQS for the treatment of 
vascular calcification in human. However, PQS are major 
bioactive components of Xinyue capsule which is a pat-
ented Chinese herbal medicine and is used as adjunct to 
conventional therapy on cardiovascular diseases for over 
ten years in China [51]. Previous study demonstrated that 
in patients with stable coronary artery diseases (CAD) 
after percutaneous coronary intervention (PCI) within 
the preceding 3 to 12  months, Xinyue capsule (100  mg 
PQS, three times a day) reduced the incidence of primary 
composite endpoint in addition to conventional treat-
ment [52]. Our study demonstrated that PQS inhibited 
high phosphate-induced VSMCs calcification in  vitro, 
further studies are needed to determine whether PQS 
prevents vascular calcification in  vivo and to provide 
theoretical evidence for PQS as a potential therapy in 
patients with vascular calcification.

Conclusion
In summary, the results of the present study revealed that 
activation of Nrf2 signaling was likely a crucial pathway 
for the PQS-mediated inhibition of VSMCs calcification. 
PQS effectively inhibited VSMCs calcification by amelio-
rating oxidative stress and regulating osteogenic genes 
via the promotion of Nrf2 expression. Therefore, PQS 
against oxidative stress may offer a greater therapeutic 
benefit for vascular calcification with an improved side-
effect profile.
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