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Abstract 

Background With fast rising incidence, papillary thyroid carcinoma (PTC) is the most common head and neck cancer. 
Parthenolide, isolated from traditional Chinese medicine, inhibits various cancer cells, including PTC cells. The aim was 
to investigate the lipid profile and lipid changes of PTC cells when treated with parthenolide.

Methods Comprehensive lipidomic analysis of parthenolide treated PTC cells was conducted using a UHPLC/Q‑TOF–
MS platform, and the changed lipid profile and specific altered lipid species were explored. Network pharmacology 
and molecular docking were performed to show the associations among parthenolide, changed lipid species, and 
potential target genes.

Results With high stability and reproducibility, a total of 34 lipid classes and 1736 lipid species were identified. Lipid 
class analysis indicated that parthenolide treated PTC cells contained higher levels of fatty acid (FA), cholesterol ester 
(ChE), simple glc series 3 (CerG3) and lysophosphatidylglycerol (LPG), lower levels of zymosterol (ZyE) and Monoga‑
lactosyldiacylglycerol (MGDG) than controlled ones, but with no significant differences. Several specific lipid species 
were changed significantly in PTC cells treated by parthenolide, including the increasing of phosphatidylcholine (PC) 
(12:0e/16:0), PC (18:0/20:4), CerG3 (d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), phosphatidylinositol (PI) 
(19:0/20:4), lysophosphatidylcholine (LPC) (28:0), ChE (22:6), and the decreasing of phosphatidylethanolamine (PE) 
(16:1/17:0), PC (34:1) and PC (16:0p/18:0). Four key targets (PLA2G4A, LCAT, LRAT, and PLA2G2A) were discovered when 
combining network pharmacology and lipidomics. Among them, PLA2G2A and PLA2G4A were able to bind with 
parthenolide confirmed by molecular docking.

Conclusions The changed lipid profile and several significantly altered lipid species of parthenolide treated PTC cells 
were observed. These altered lipid species, such as PC (34:1), and PC (16:0p/18:0), may be involved in the antitumor 
mechanisms of parthenolide. PLA2G2A and PLA2G4A may play key roles when parthenolide treated PTC cells.
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Introduction
Thyroid carcinoma is the most frequent type of head and 
neck cancer, with an incidence rate among women that is 
three times greater than that among men, accounting for 
around 5% of cancer cases reported among women [1]. 
Papillary thyroid carcinoma (PTC) is the most common 
pathologic subtype, comprising 70–80% of all thyroid 
cancers [2], and has a relatively favourable prognosis, 
with a 90% 10-year survival rate [3]. However, with the 
global incidence of PTC rising rapidly, an increasing 
number of these patients are unable to be controlled due 
to distant metastases [1], making it imperative to explore 
deeper into its pathogenesis and to develop better treat-
ments, with the aim of improving the overall prognosis of 
thyroid cancer.

Parthenolide is a sesquiterpene lactone, which is iso-
lated and purified from traditional herbal medicine 
feverfew (Tanacetum parthenium). It has been widely 
utilized for its anti-inflammatory and antioxidant prop-
erties, with many studies demonstrating its effectiveness 
in treating headaches, fever, and rheumatoid arthritis 
[4, 5]. In recent years, numerous studies have explored 
its potential in inhibiting the growth of certain cancer 
cells, such as those found in breast, lung, and colorectal 
cancers [6–8]. The antitumor effects of parthenolide are 
thought to be due to its ability to inhibit signal transducer 
and activator of transcription 3 (STAT3) and nuclear fac-
tor κB (NF-κB), resulting in epithelial-mesenchymal tran-
sition (EMT) and other processes [9–11].

A recent study from our team has revealed that par-
thenolide can promote apoptosis of PTC cells in a con-
centration-dependent manner [5]. To investigate the 
pharmacological effects of parthenolide on PTC cells, 
metabolomics were utilized and it was observed that 
these metabolites were mainly involved in the lipid 
metabolism, tricarboxylic acid cycle, choline metabolism, 
and amino acid metabolism. These findings indicate that 
parthenolide can inhibit the growth and proliferation of 
PTC cells by enhancing oxidative stress response and 
metabolic imbalance, particularly in terms of amino acid 
and lipid changes [5, 12]. Furthermore, we demonstrated 
that parthenolide can lead to proteomic differences in 
PTC cells (BCPAP cells) [13].

Lipids play a pivotal role in cell membrane structure, 
cell differentiation, proliferation, and metabolism regula-
tion. Additionally, aberrations in lipid biosynthesis and 
metabolism have been linked to cancer cell invasiveness 
and metastasis. Consequently, it is essential to further 
investigate the alterations in lipid metabolism that occur 
during malignancy and treatment [14–17].

In recent years, the development of lipidomics has been 
accelerated by advances in mass spectrometry. Several 
studies have proposed that certain aberrant lipid classes 

or species may be novel biomarkers for tumors; for exam-
ple, glycerolipids have been used to detect early-stage 
breast cancer [18], and a combination of phosphatidyl-
choline (PC) (14:0/18:2), phosphatidylethanolamine (PE) 
(16:1e/18:2), and PE (15:1e/22:6) have been used to iden-
tify early stage cervical cancer [19]. After exposing endo-
crine disruptors to prostate cancer cells, some significant 
lipid changes were identified, with vital lipid-metabolism 
pathways being involved [20]. Thus, lipidomic analysis 
can not only identify potential biomarkers and therapeu-
tic targets for cancer, but also help understand the patho-
genesis of cancer and the mechanism of antitumor drugs.

The present study utilized network pharmacology and 
molecular docking to analyze the potential targets of 
parthenolide in PTC cells, and to further investigate the 
upstream molecular mechanisms and drug-binding affin-
ity of parthenolide. Specifically, network pharmacology 
was used to identify the targets that parthenolide acted 
on, and the proteins that modulated the lipid metabolites 
identified from lipidomics [21, 22]. Additionally, molecu-
lar docking was employed to predict the binding strength 
between parthenolide and its targets at the spatial level 
[23]. The above methods will be used to initially explore 
the key targets of parthenolide in PTC cells.

In this research, an untargeted lipidomic analysis was 
performed using chemometric analysis tools in order to 
explore the lipid profile and changes of PTC cells treated 
with parthenolide. Additionally, network pharmacol-
ogy and molecular docking were conducted to explore 
the potential targets of parthenolide against PTC. The 
aim of this study was to explore the lipid profile and lipid 
changes and to identify the potential targets of parthe-
nolide against PTC.

Materials and methods
Reagents
Parthenolide was purchased from Absin (Shanghai, 
China), and human PTC cell line BCPAP was purchased 
from Shanghai Institutes for Biological Sciences, China. 
RPMI 1640 medium was purchased from Corning, USA. 
Fetal bovine serum was purchased from Shuangru Biol-
ogy ScienceandTechnology Co.Ltd. HPLC-grade formic 
acid and HPLC-grade ammonium formates were pur-
chased from Sigma. MS-grade acetonitrile, MS-grade 
methanol, and HPLC-grade 2-propanol were purchased 
from Thermo Fisher.

Cell culture and treatment
BCPAP containing 10% fetal bovine serum, 100 U/mL 
streptomycin, and 100 U/ml penicillin, was maintained 
in a complete RPMI 1640 medium. BCPAP were cul-
tured in an environment of 5%  CO2, 37 °C. Sufficient cell 
samples were divided into 12 groups. According to the 
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appropriate concentration (IC50) explored in the pre-
liminary experiment [13], parthenolide was dissolved in 
0.05% DMSO and diluted with PBS to 10  μM and was 
added to each treatment group (n = 6) for 24  h, and 6 
control groups were added with the same amount of 
complete culture medium.

Lipid extraction and sample preparation
The samples were homogenized with 200 µL water and 
240 µL methanol. Then 800 µL of MTBE was added and 
the mixture was managed by ultrasound at 4 degree 
centigrade for 30  min at room temperature. Finally, the 
solution was centrifuged at 14,000 rpm for 15 min at 10 
degree centigrade to obtain the supernatants and dried 
with nitrogen.

LC–MS/MS method for lipid analysis
Reverse phase chromatography was used for liquid chro-
matography separation with a column (Waters, CSH 
C18, 1.7 µm, 2.1 mm × 100 mm). The lipid extracts were 
re-dissolved in 200 µL 90% isopropanol /acetonitrile, 
then centrifuged at 14,000  rpm at 10 degree centigrade 
for 15 min, at last 3 µL of each sample was injected onto 
the CSH C18 column. Solvent A contained acetoni-
trile–water (6:4, v/v) with 0.1  mm ammonium formate 
and 0.1% formic acid. Solvent B contained acetonitrile–
isopropanol (1:9, v/v) with 0.1  mm ammonium formate 
and 0.1% formic acid. With a flow rate of 300 μL/min, 
30% solvent B was maintained for 2 min. After that, sol-
vent B increases to 100% in 23 min, and then it was bal-
anced at 5% for 10  min. Mass spectra was performed 
on a Q-Exactive Plus in positive and negative mode, 
respectively. ESI parameters were adopted for all meas-
urements as follows: heater temperature, 300 degree cen-
tigrade; sweep gas flow rate 1 arb; aux gas flow rate 15 
arb; sheath gas flow rate 45 arb; spray voltage 3.0 kV and 
2.5  kV for positive and negative electrospray ionization 
mode, respectively; S-Lens RF Level 50% and 60% for 
positive and negative, respectively; and the scan ranges 
200–1800 m/z and 250–1800 m/z for positive and nega-
tive, respectively.

Based on MS/MS math, LipidSearch was used for the 
identification of lipid species. LipidSearch contains more 
than 1,500,000 fragment ions and more than 30 lipid 
classes in the database. Both mass tolerance for precursor 
and fragment were set to 5 ppm.

Pharmacology network construction
In order to discover the related disease targets, the 
keyword ‘‘papillary thyroid carcinoma” was searched 
from OMIM Database (http:// omim. org/), GeneCards 
Database (http:// www. genec ards. org/), and DrugBank 
(http:// go. drugb ank. com/). In addition, the targets of 

parthenolide were retrieved from SEA search server 
(http:// sea. cbksl ab. org/), STITCH (http:// stitch. embl. 
de/), SwissTargetPrediction (http:// swiss targe tpred iction. 
ch/), and PharmMapper server (http:// www. lilab- ecust. 
cn/ pharm mapper/). The intersection of the above tar-
gets was considered the potential targets of parthenolide 
against PTC. Afterward, the standard target names were 
obtained from UniProtKB (http:// www. unipr ot. org/). The 
lipid targets were generated from the differential lipid 
metabolites by using MetScape in Cytoscape 3.8.0 soft-
ware. Then, a protein–protein interaction (PPI) network 
was presented by STRING 11.5 (http:// cn. string- db. org/) 
to show the link between these predicted targets and 
lipid targets. Hub targets were obtained via CytoHubba 
in Cytoscape. As a result, the compound-targets-metab-
olites network was constructed containing relationships 
among parthenolide, relevant target genes, and lipid 
metabolites.

Molecular docking
The three-dimensional structure of parthenolide was 
acquired from PubChem Compound (PubChem CID: 
7,251,185). The structure was preprocessed by adding 
hydrogen atoms and extracting water molecules. The 
protein structures of the hub targets were obtained from 
PDB database (http:// www. rcsb. org/). Four protein tar-
gets were studied: PLA2G4A (PDB ID: 1RLW), LCAT 
(PDB ID: 4X90), LRAT (PDB ID: 4DPZ), and PLA2G2A 
(PDB ID: 3U8I). Then, the molecular docking was per-
formed using LibDock with the default docking param-
eters, and the results were sequenced according to the 
LibDockScore of each protein.

Statistical analysis
The data extracted by LipidSearch were analyzed, includ-
ing univariate statistical analysis, multivariate statistical 
analysis, as well as hierarchical clustering and correlation 
analysis. Student’s t-test and multiple of variation analy-
sis were used for univariate statistical analysis. The lipid 
profiles showing differences with lower than 0.67 fold 
decrease or more than 1.5 fold increase along with p 
value < 0.05 were supposed to be significantly different 
lipids among parthenolide treated cells. Multivariate sta-
tistical analysis included un-supervised principal com-
ponent analysis (PCA), supervised partial least squares 
discrimination analysis (PLS-DA), as well as orthogonal 
partial least squares discrimination analysis (OPLS-DA). 
Discriminant lipids were determined by the variable 
importance in the projection (VIP) parameter (VIP > 1,) 
and p value (P value < 0.05). Lipid Pathway Enrichment 
Analysis (LIPEA) software was used to perform the path-
way enrichment analysis of metabolites [24].

http://omim.org/
http://www.genecards.org/
http://go.drugbank.com/
http://sea.cbkslab.org/
http://stitch.embl.de/
http://stitch.embl.de/
http://swisstargetprediction.ch/
http://swisstargetprediction.ch/
http://www.lilab-ecust.cn/pharmmapper/
http://www.lilab-ecust.cn/pharmmapper/
http://www.uniprot.org/
http://cn.string-db.org/
http://www.rcsb.org/
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Results
Lipidomic analysis showed high stability 
and reproducibility
To evaluate the stability and repeatability of the experi-
ment, each group of samples was equally mixed into the 
quality control sample (QC). The results of QC UHPLC-
obitrap MS base peak were compared with overlapping 
spectra, which showed that the response intensity over-
lapped significantly, as well as the retention time of chro-
matographic peaks, indicating that this experiment was 
highly reproducible. The results of pearson correlation 
analysis showed that the coefficient between QC samples 
is above 0.9, indicating good reproducibility. All QC and 
experimental samples were extracted and PCA analy-
sis was performed after Pareto-scaling. The QC samples 
were closely clustered, indicating that lipidomic analysis 
was highly reproducible (Additional file 1).

Characterization of lipid composition
The data obtained from positive- and negative-ion modes 
were analyzed qualitatively and quantitatively by using 
the LipidSearch software.  In total, 34 lipid classes and 
1736 lipid species were identified. The specific results are 
presented in Additional file  2.  Figure  1 shows the lipid 
class identified in this study and the number of lipid class.

Lipid class analysis indicated that parthenolide treated 
BCPAP PTC cells contained higher levels of fatty acid 
(FA), cholesterol ester (ChE), simple glc series 3 (CerG3) 
and lysophosphatidylglycerol (LPG), lower levels of 
zymosterol (ZyE) and monogalactosyldiacylglycerol 
(MGDG) than controlled ones, but with no significant 

differences. The levels of other lipid classes were similar 
in both groups. (Fig. 2, Additional file 3).

Parthenolide markedly altered the lipid profile
Visible separation was not identified clearly between the 
two groups from the score plot of PCA (Fig. 3A). PLS-DA 
and OPLS-DA model (Fig. 3B and C), however, showed 
a complete separation of detected ions in parthenolide 
treated groups from control groups, with a R2X (cum)-
value of 0.384, a R2Y (cum)-value of 0.907, a Q2 (cum)-
value of 0.44, and with a R2X (cum)-value of 0.384, a R2Y 
(cum)-value of 0.907, a Q2 (cum)-value of 0.509, respec-
tively. Permutation tests were performed for avoiding 
overfitting (Fig. 3D and E).

The VIP obtained by the OPLS-DA model can be used 
to measure the impact strength of various lipid species 
on the discrimination of each group of samples. Univari-
ate analysis can be used to visualize the significance of 
lipid species changes between the two groups (Fig. 4A), 
thus helping us to screen potential marker lipid species 
based on VIP and P-values (P-value < 0. 05 and VIP > 1). 
A total of 10 lipid species were selected and listed in 
Table 1, including PC (12:0e/16:0), PC (18:0/20:4), CerG3 
(d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), 
phosphatidylinositol (PI) (19:0/20:4), lysophosphatidyl-
choline (LPC) (28:0), ChE (22:6), and the decreasing of 
PE (16:1/17:0), PC (34:1) and PC (16:0p/18:0).

In order to assess the rationality of different lipid spe-
cies, and to show the association between the samples 
and the expression patterns of lipid species in different 
samples more comprehensively, a hierarchical clustering 
(based on analysis of the Pearson correlation coefficients) 

Fig. 1 The lipid class and number identified in this study
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Fig. 2 Parthenolide (T) altered the abundance of lipid class in papillary thyroid cells compared with control group (C), but with no 
significance. All P > 0.05. FA, fatty acid; ChE, cholesterol ester; CerG3, simple glc series 3; LPG, lysophosphatidylglycerol; ZyE, zymosterol; MGDG, 
monogalactosyldiacylglycerol

Fig. 3 A Visible separation was not identified clearly between the two groups from the score plot of principal component analysis (PCA). B Partial 
least‑squares determinant analysis (PLS‑DA) showed a complete separation of detected ions in parthenolide treated groups from control groups 
[R2X (cum) = 0.384, R2Y (cum) = 0.907, Q2 (cum) = 0.44]. C Orthogonal projections to latent structures discriminant analysis (OPLS‑DA) showed a 
complete separation of detected ions in parthenolide treated groups from control groups [R2X (cum) = 0.384, R2Y (cum) = 0.907, Q2 (cum) = 0.509]. 
D Permutation test of the PLS‑DA model [Q2‑intercept = ‑0.7946]. E Permutation test of the OPLS‑DA model [Q2‑intercept = ‑0.3653]
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was performed to demonstrate the 10 lipid species 
that have changed significantly. As shown in Fig.  4B, it 
revealed that these significantly changed lipid species 
formed a cluster, which means that they have similar 
expression patterns and may have close relation during 
the lipid metabolic process.

The correlation analysis was performed to obtain the 
correlation degree between the significant lipid species, 

and help measure the closeness of differences between 
lipid classes and species in the lipid metabolic process, 
further understand the relationship between lipid spe-
cies in the process of biological changes. In this study, the 
correlation analysis of selected ten lipid species showed 
significant positive correlations between LPE (18:0) and 
PC (12:0e/16:0), ChE(22:6), and LPC (28:0), respectively, 
between LPC (28:0) and PC (12:0e/16:0), and between 

Fig. 4 A The volcano plot of lipid species between the two groups based on the results of univariate analysis (fold change (FC) > 1.5 or FC < 0.67, 
P‑value < 0. 05 and VIP > 1). B Hierarchical clustering of the 10 significantly changed lipid species. C The correlation analysis shows the correlation 
between the significant lipid species

Table 1 Ten significant changed lipid species of parthenolide treated papillary thyroid carcinoma cells

CerG3 simple glc series 3, ChE Cholesterol ester, LPC Lysophosphatidylcholine, LPE Lysophosphatidylethanolamine, PC Phosphatidylcholine, PE 
Phosphatidylethanolamine, PI Phosphatidylinositol, VIP the variable importance in the projection

LipidIon Class IonFormula CalMz RT-(min) Fold Change P-value VIP

PE(16:1/17:0)‑H PE C38 H73 O8 N1 P1 702.5079 10.2916 0.751478 0.0013 3.050149

PC(34:1) + H PC C42 H83 O8 N1 P1 760.5851 11.2935 0.516481 0.024864 2.369579

LPC(28:0) + H LPC C36 H75 O7 N1 P1 664.5276 9.12472 2.341388 0.019202 2.103261

PC(18:0/20:4) + HCOO PC C47 H85 O10 N1 P1 854.5917 10.46383 1.488194 0.000975 1.749522

CerG3(d18:1/24:1) + H CerG3 C60 H112 O18 N1 1134.787 11.45426 1.507216 0.034294 1.248035

PC(12:0e/16:0) + HCOO PC C37 H75 O9 N1 P1 708.5185 9.155024 2.497935 0.017275 1.236085

ChE(22:6) + NH4 ChE C49 H80 O2 N1 714.6184 15.11703 1.920327 0.021625 1.219279

PC(16:0p/18:0) + Na PC C42 H84 O7 N1 P1 Na1 768.5878 10.90136 0.793529 0.043174 1.087524

LPE(18:0)‑H LPE C23 H47 O7 N1 P1 480.3096 3.931845 1.398238 0.042449 1.079679

PI(19:0/20:4)‑H PI C48 H84 O13 N0 P1 899.5655 9.793264 1.509611 0.035162 1.041106
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CerG3(d18:1/24:1) and PI (19:0/20:4) (P < 0.01, |r|> 0.5, 
Fig.  4C, Additional file  3). The significant negative cor-
relations were found between PC (18:0/20:4) and PC 
(16:0p/18:0), as well as PC (18:0/20:4) and PE (16:1/17:0) 
(P < 0.01, |r|> 0.5, Fig. 4C, Additional file 4).

Pathway enrichment analysis
LIPEA software was used to analyze the pathway enrich-
ment of metabolites. The results demonstrated that 
glycerophospholipid was highly ranked (64%) and it was 
closely related to a group of significant lipid species iden-
tified in this study after PTC cells treated with parthe-
nolide. Other pathways identified included ferroptosis 
(27%), glycosylphosphatidylinositol—anchor biosynthesis 
(18%), autophagy—other (18%), and autophagy—animal 
(18%) (Table 2).

Network pharmacology analysis of parthenolide 
against PTC
Based on the OMIM Database, GeneCards Database, 
and DrugBank database, a total of 297 target genes were 
related to PTC. There were 238 target proteins of parthe-
nolide based on the PharmMapper server, SEA search 
server, STITCH, and SwissTargetPrediction. When these 
selected genes were intersected, 14 potential targets of 
parthenolide against PTC were obtained. Besides, the 6 
differential lipid metabolites regulated by parthenolide 
were introduced into MetScape in Cytoscape 3.8.0 soft-
ware, and a total of 51 lipid metabolite targets were 
obtained.

Subsequently, the 51 lipid metabolite targets and 
14 potential targets of parthenolide against PTC were 
linked by using STRING 11.5 to establish the PPI net-
work (Fig. 5). Finally, the compound-targets-metabolites 
network was constructed consisted of 72 nodes (par-
thenolide, 65 relevant target genes, and 6 lipid metabo-
lites) and 120 edges (Fig.  6). PLA2G4A, LCAT, LRAT, 
and PLA2G2A were selected as the key targets in this 

network based on parameters including degree, between-
ness, closeness, and stress in this network (Table 3).

Molecular docking analysis of parthenolide binding 
to predicted targets
We performed molecular docking studies to further 
explore the interaction between parthenolide and pre-
dicted hub targets by using LibDock. The results proved 
that parthenolide could be docked into PLA2G2A and 
PLA2G4A, but not LCAT or LRAT. The docking analy-
sis of PLA2G2A showed that parthenolide made hydro-
gen-bonding interactions with LYS A:62 and VAL B:30 
residues at the active site. The van der Waals interac-
tions included HIS A:6, GLY A:22, OLD A:47, GLY A:29, 
PHE B:23, GLY B:22, GLY B:29, ALA B:18, and HIS 
B:6 residues. The binding energy was 80.2222 between 
PLA2G2A and parthenolide (Fig.  7A). The docking 
analysis of PLA2G4A showed that parthenolide made 
hydrogen-bonding interactions with SER A:110 residue. 
The van der Waals interactions included ASP A:80, ASN 
A:85, GLU A:84, GLN A:83, ASN A:82, THR A:108, LEU 
A:136, LYS A:113, VAL A:114 and MET A:112 residues. 
The binding energy of parthenolide and PLA2G4A was 
75.6353 (Fig.  7B). These docking analysis results pre-
sented the high affinities between parthenolide and the 
key targets, PLA2G2A and PLA2G4A.

Discussion
For the first time, to our knowledge, this study inves-
tigated the lipid profile and lipid changes of PTC cells 
treated with parthenolide. We successfully identified 34 
lipid classes and 1736 lipid species from PTC cells uti-
lyzing LC–MS/MS. Several specific lipid species were 
found to have changed significantly in PTC cells treated 
by parthenolide, while different lipid classes were 
found in PTC cells treated by parthenolide, but with-
out significance. The results of this lipidomics study 
were then further supplemented by network pharma-
cology to expand the mechanism of lipid metabolites 

Table 2 Lipid Pathway Enrichment Analysis (LIPEA)

Pathway name Pathway 
lipids

Converted lipids 
(number)

Converted lipids 
(percentage)

P-value Benjamin 
correction

Glycerophospholipid metabolism 26 7 63.64 0.0000 0.0000

Ferroptosis 11 3 27.27 0.0010 0.0043

Glycosylphosphatidylinositol—anchor biosynthesis 3 2 18.18 0.0011 0.0043

Autophagy—other 3 2 18.18 0.0011 0.0043

Autophagy—animal 4 2 18.18 0.0023 0.0068

Choline metabolism in cancer 5 2 18.18 0.0037 0.0093

Retrograde endocannabinoid signaling 8 2 18.18 0.0101 0.0217

Pathogenic Escherichia coli infection 1 1 9.09 0.0206 0.0386
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of parthenolide against PTC. Through combining net-
work pharmacology and lipidomics, four key targets 
(PLA2G4A, LCAT, LRAT, and PLA2G2A) were identi-
fied, and PLA2G2A and PLA2G4A were further con-
firmed to be able to bind with parthenolide through 
molecular docking.

A previous study demonstrated that parthenolide could 
promote apoptosis of PTC cells [5]. Metabolomics analy-
sis revealed that the most important metabolic pathways 
affected by parthenolide treatment were amino acid 
metabolism and glycerophospholipid metabolism [5]. We 
have previously demonstrated that parthenolide led to 
proteomic differences in BCPAP cells [13]. Furthermore, 
previous studies have suggested that lipid metabolism 
is involved in the PTC progression [25, 26]. However, 
the precise lipid profile and lipid changes of PTC cells 
treated by parthenolide have not been fully elucidated. In 
this study, we further provide evidence that most of the 
top ten significant lipid species, such as PC, PE, LPC, PI 
and LPE, belong to glycerphospholipid, which may be 
involved in the mechanism of parthenolide in the treat-
ment of PTC. This data was further supported by the 
results of an analysis of LIPEA, which showed a high level 

of glycerphospholipid metabolism and a significant cor-
relation with the lipids identified in our study.

Former studies have shown that abnormal PC distribu-
tion may alter the microenvironment of the cellular lipid 
membrane, resulting in the variation of membrane fluid-
ity and function [27, 28]. As a component of cell mem-
brane, PC is increased in rapidly growing cancer cells. 
Abnormal distributions of PC have been observed in 
areas of cancer, including lung, colorectal, breast, oral, 
and gastric cancer [29, 30].

In recent years, the lipid composition of thyroid 
cancer patients has undergone considerable changes, 
which may play a key role in the pathogenesis of the 
disease. [31]. Ishikawa et  al. conducted a tissue lipi-
domic study in seven PTC patients compared to 
non-cancerous tissues using imaging mass spectrom-
etry [15]. They demonstrated that PC (16:0/18:1), PC 
(16:0/18:2) and sphingomyelin (SM) (d18:0/16:1) were 
elevated significantly in PTC tissues [15]. Wojakowska 
et  al. also observed that multiple PC (32:0, 32:1, 34:1 
and 36:3) and SM (34:1 and 36:1) concentrations in 
three PTC patients were significantly higher compared 
to the normal tissue [32]. Guo et  al. highlighted that 

Fig. 5 The protein–protein interaction networks by STRING. White nodes: lipid metabolite targets. Yellow nodes: potential parthenolide targets; Red 
node (PLA2G2A): both lipid metabolite and potential parthenolide targets
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PC (34:1) in both tissue and serum could effectively 
distinguish between malignant thyroid cancer patients 
and healthy individuals [33]. Therefore, PC may serve 
as important lipid class associated with the pathogen-
esis of thyroid cancer. Besides, PE (16:1p, 18:0p, 36:1, 
38:3, and 38:6) and LPE (16:0, 18:1, and 18:2) were 
found to be markedly high in the plasma of thyroid 
cancer patients when compared with healthy controls 
[34]. Benesch et  al. demonstrated that thyroid cancer 
cell division can be stimulated by LPC [35]. Previously, 

no studies examining the association of thyroid cancer 
with PI, CerG3 or ChE had been conducted.

In our research, the significant difference of lipid class 
was not found from PTC cells treated by parthenolide, 
but several lipid species were changed significantly in 
PTC cells, such as increased levels of LPE (18:0), LPC 
(28:0), PC (12:0e/16:0) and PC (18:0/20:4), as well as 
decreased levels of PE (16:1/17:0), PC (34:1) and PC 
(16:0p/18:0). One of the mechanisms of parthenolide for 
treating thyroid cancer may be achieved by lowering the 

Fig. 6 The compound‑target‑metabolite network of parthenolide treated papillary thyroid carcinoma cells. (Red: Compound, Blue: 
predicted‑targets, Green: lipid metabolite targets, Yellow: lipid metabolites)

Table 3 The top 8 nodes based on degree, betweenness, closeness and stress

Rank Gene Name Degree Gene Name Betweenness Gene Name Closeness Gene Name Stress

1 PLA2G4A 4 PLA2G4A 243.89251 PLA2G2A 34.83333 PLA2G4A 1842

2 LCAT 3 LCAT 138.16667 PLA2G4A 33.5 LCAT 614

3 PLA2G2A 3 LRAT 33.16667 PLA2G12A 30.66667 PLA2G2A 294

4 LRAT 2 PLA2G2A 4.10973 PLA2G2E 30.66667 LRAT 108

5 PLA2G2E 2 PLA2G12A 4.10973 PLA2G2D 30.66667 PLA2G2E 108

6 PLA2G2D 2 PLA2G2E 4.10973 PLA2G2F 30.66667 PLA2G2D 108

7 PLA2G2F 2 PLA2G2D 4.10973 LCAT 29.58333 PLA2G2F 108

8 PEMT 2 PLA2G2F 4.10973 LRAT 27.91667 PEMT 108
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levels of PC (34:1) and PC (16:0), which have been found 
to be diagnostic markers for thyroid cancer [15, 32, 33].

The two key targets, PLA2G2A and PLA2G4A, which 
were discovered through network pharmacology and lipi-
domics and were subsequently confirmed via molecular 
docking, may play a crucial role in the treatment of par-
thenolide against PTC. As family members of phospholi-
pase A2 (PLA2), PLA2G2A and PLA2G4A have a variety 
of biological functions, including involvement in cell 
signaling and inflammatory response [36, 37]. Further-
more, PLA2G2A and PLA2G4A have been implicated 
in the pathogenesis of various cancers, such as gastric 
cancer, colorectal cancer, and prostrate cancer [38–41]. 
Studies have also demonstrated that the expression of 
the PLA2G2A gene in mice can be suppressed by thyroid 
hormone [42, 43]. Nontheless, no studies have examined 
the association of the two key genes and the pathogenesis 
of PTC.

This study has some limitations. First, due to limited 
time and funds, the roles of PLA2G2A and PLA2G4A in 
the parthenolide-induced antitumor effect have not yet 

been validated through more experiments. Second, the 
sample size is relatively small, which may be related to 
the unstable results of PLA and insignificant difference 
in lipid classes between two groups. As we found altered 
lipid profile and changes of PTC cells treated with par-
thenolide, as well as the key targets from network phar-
macology and molecular docking, it suggests that further 
research should use a larger sample size and more in vitro 
experiments.

Conclusion
This study is the first of its kind to report the lipid profile 
and changes of PTC cells following treatment with par-
thenolide. We observed alteration in lipid species, such 
as PC (34:1), and PC (16:0p/18:0). To better elucidate 
the mechanisms by which this occurs, network pharma-
cology and molecular docking were employed to iden-
tify two key targets (PLA2G4A and PLA2G2A) that are 
able to bind parthenolide. This research provides novel 
insights into the underlying mechanisms of PTC, and 
further exploration is warranted.

Fig. 7 The binding mode of parthenolide and PLA2G2A (A) and PLA2G4A (B)
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