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Abstract 

Background  Streptococcus mutans is a bacterium that causes oral diseases. Plaque, a biofilm produced by S. mutans 
and other bacteria, makes it difficult to remove cariogenic oral microorganisms, including biofilm producers. Glucan 
synthesis by glucosyltransferase is one of the mechanisms underlying plaque formation. This study demonstrates the 
effectiveness of inhibiting biofilm formation by interfering with the glucosyltransferase activity of S. mutans using 
edible herbal medicines.

Methods  This study investigated the inhibitory activity of Glycyrrhizae Radix extract, Rubi Fructus extract, glycyrrhizin 
from Glycyrrhizae Radix, and ellagic acid from Rubi Fructus against glucosyltransferase activity of S. mutans. Enzyme 
kinetic analysis identified the mechanism by which glycyrrhizin and ellagic acid inhibit enzyme activity.

Results  The conditions for synergistically inhibiting biofilm formation by combining Glycyrrhizae Radix and Rubi 
Fructus extracts were identified. Biofilm formation was also synergistically inhibited by mixing their respective active 
constituents, glycyrrhizin and ellagic acid. Glycyrrhizin and ellagic acid inhibited glucosyltransferase via noncompeti‑
tive and uncompetitive mechanisms, respectively, indicating that they inhibit it via distinct mechanisms.

Conclusions  This study presents an effective oral hygiene method using the synergistic activity of two natural plant 
extracts to inhibit biofilm formation through different inhibitory mechanisms against glucosyltransferase of S. mutans.
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Background
Dental caries is an infectious oral disease that causes 
progressive destruction and loss of tooth enamel [1]. 
Streptococcus mutans is a major cause of dental car-
ies and a representative bacterium that forms biofilm in 
the oral cavity, which is called plaque [2]. Furthermore, 
S. mutans glucosyltransferase (GTase) synthesizes sticky 

glucan from sucrose to promote the formation of dental 
biofilm and the attachment of oral microorganisms. Oral 
microorganisms, including S. mutans, produce organic 
acids from carbohydrates and accelerate the progression 
of dental caries [3]. Therefore, it is essential to inhibit 
the formation of dental biofilm to prevent or treat dental 
caries.

GTase synthesizes water-soluble and/or water-insolu-
ble glucan. Exopolysaccharide-based insoluble glucan is 
a significant component in the formation of dental bio-
film [4] and helps S. mutans adhere to the surface of teeth 
[5–7]. Because GTase uses sucrose to produce insoluble 
glucans, it has been suggested that sugar alcohols such as 
xylitol and maltitol [8, 9], alternative carbohydrates such 
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as maltose and fructose [10, 11], and alternative sweet-
eners such as stevia [12] can substitute sucrose. GTase 
consists of two functional domains: the amino-terminal 
catalytic domain (CAT domain), which binds to and 
hydrolyzes sucrose, and the carboxyl-terminal glucan-
binding domain, which binds to glucan and determines 
the properties of synthesized glucan [13, 14]. Inhibitors 
that prevent sucrose from binding to the CAT domain of 
GTase have been proposed to reduce plaque by inhibiting 
the production of insoluble glucan [15, 16].

In recent decades, chlorhexidine and sodium fluoride 
have been used to prevent oral diseases; however, they 
are irritative and have negative consequences, such as 
the emergence of resistant strains [17–19]. Alternatively, 
plant extracts have been proposed as novel materials for 
promoting oral health [20, 21] although they require high 
concentrations to achieve antibiotic-like efficacy. Due to 
their inherent flavor and aroma, consumers may reject 
high concentrations of plant extracts. To mitigate these 
issues without diminishing their efficacy, it is necessary 
to use plant extracts at lower concentrations. In this con-
text, it has been proposed that extract combinations can 
be utilized [22–27]. However, few studies have examined 
combinations with the synergistic inhibition of S. mutans 
biofilm formation. In addition, it is necessary to iden-
tify the active constituents of plant extracts that can be 
used in combination and their biological mechanisms of 
action.

Our previous studies recently proposed two materials 
that strongly inhibit S. mutans biofilm formation via dif-
ferent mechanisms [28, 29]. One is a 50% ethanol extract 
of Glycyrrhizae Radix that inhibits the growth of S. 
mutans [29]. Its active constituents are glycyrrhizin and 
glycyrrhetic acid. The other is a methanol extract of Rubi 
Fructus (fruit of Rubus coreanus) that inhibits GTase 
activity but not the growth of S. mutans [28].

Glycyrrhizae Radix and Rubi Fructus are sweet, medic-
inal, or functional foods with a long history of use. In 
numerous studies, their biological activities and active 
constituents have also been suggested. Glycyrrhizae 
Radix is recognized for its anti-inflammatory [30], anti-
oxidant [31], and hepatoprotective [32] properties, as 
well as its ability to prevent gastrointestinal ulcers [33] 
and alleviate dry mouth [34]. Meanwhile, Rubi Fructus 
has been reported to exert anti-inflammatory [35, 36], 
antioxidant [37, 38], and anticancer effects [39]. A lol-
lipop containing Glycyrrhizae Radix extract has been 
developed for the prevention of caries [40]. Glycyrrhizae 
Radix is known to be particularly effective at preventing 
dental caries.

In this study, a method for inhibiting the biofilm for-
mation of S. mutans by combining the extracts of Glycyr-
rhizae Radix and Rubi Fructus is proposed. To this end, 

this study proposes an extraction method for Rubi Fruc-
tus in addition to the extraction method for Glycyrrhizae 
Radix from the previous study [29], as well as a biologi-
cal mechanism of component compounds that inhibit 
the biofilm formation of S. mutans in the two proposed 
extracts.

Methods
Strain, medium, and culture conditions
Streptococcus mutans GS-5, a serotype c strain, was pro-
vided by LG Household & Health Care Ltd. [41]. Brain 
heart infusion (BHI) medium (SKU: 237500) was pur-
chased from Becton, Dickinson and Company Korea Ltd. 
(Seoul, Korea). BHI-S medium for biofilm formation was 
made using BHI medium and 1% (w/v) sucrose. BHI agar 
plates were made with BHI medium and 1.5% (w/v) agar. 
S. mutans stored in 25% (v/v) glycerol stock at − 80 °C 
was streaked on a BHI agar plate and incubated at 37 °C 
for 2 days. The BHI medium was inoculated with a single 
colony from the BHI agar plates and incubated at 37 °C 
for 24 h.

Glycorrhizin (catalog number: G0150) and ellagic acid 
dihydrate (catalog number: E0375) were purchased from 
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and 
used as standard compounds for the analyses of Glycyr-
rhizae Radix and Rubi Fructus, respectively. Glycyrrhi-
zin (100 mM) and ellagic acid (5 mM) were dissolved in 
dimethyl sulfoxide (DMSO) before use.

Preparation of Glycyrrhizae Radix and Rubi Fructus 
extracts
Dried Glycyrrhizae Radix, purchased from Jiwoondang 
Herbal Medicine Store (Seoul, Korea), was ground to a 
powder of ≤1 mm. Then, the extract solution was mixed 
at 8 mL per 1 g of Glycyrrhizae Radix powder and incu-
bated at 83 °C for 3 h. The solid powder was eliminated 
by filtration using a 75 μm–pore cartridge filter. The 
solvent was mixed again at 2 mL per 1 g of Glycyrrhizae 
Radix powder and incubated at 83 °C for 2 h. The residual 
powder was removed once more with the use of the same 
cartridge filter. The powdered mixture of the filtered 
primary and secondary extracts was produced via spray 
drying.

Dried Rubi Fructus from Jiwoondang Herbal Medi-
cine Store (Seoul, Korea) was ground to a powder with 
a particle size of ≤1 mm. Next, the solvent was mixed at 
10 mL per 1 g of the Rubi Fructus powder and incubated 
at 100 °C (water) or 70 °C (50 and 90% ethanol) for 3 h. 
Following filtration with a cartridge filter, the extract was 
spray-dried into a powder. The solid yields were 12.7% 
with water, 21.2% with 50% ethanol, and 10.7% with 90% 
ethanol.
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Glycyrrhizae Radix and Rubi Fructus were formally 
identified by the Herbal Medicine Store, where they were 
purchased. All extract powders were vacuum-sealed and 
stored at − 80 °C until use. Before use, extract powders of 
Glycyrrhizae Radix and Rubi Fructus were dissolved in 
distilled water.

Biofilm formation and its quantitative analysis
Microplate biofilm formation was measured using crys-
tal violet staining method [42]. In order to create biofilm, 
100 μL of BHI-S medium was dispensed into each well 
of a 96-well polyvinylchloride microplate, and 5% of the 
sample was added. S. mutans, with an absorbance of 0.05 
at 600 nm, was inoculated into each well. After 24 h of 
incubation at 37 °C, the absorbance at 595 nm was meas-
ured to determine cell growth using an Opsys MR micro-
plate reader (DYNEX Technologies, Chantilly, VA, USA). 
The planktonic cells were then washed with distilled 
water. The biofilm was stained with 1% crystal violet and 
then rinsed with distilled water. For the quantitative anal-
ysis of biofilm formation, crystal violet remaining in the 
biofilm was eluted with 95% ethanol, and the absorbance 
at 595 nm was measured. The relative amount of biofilm 
was calculated by comparison with the control value.

Measuring glucosyltransferase activity
Glucosyltransferase activity was measured using a modi-
fied version of the method described in previous reports 
[43, 44]. S. mutans which was stored at − 80 °C, was 
inoculated on a BHI agar plate and cultured at 37 °C for 
2 days. A single colony was inoculated into 40 mL of BHI 
medium and incubated at 37 °C for 24 h. The preculture 
cells were inoculated onto 1 L of BHI medium to reach 
Abs600 = 0.05 and incubated at 37 °C for 24 h. The cells 
were separated from the supernatant using a centri-
fuge (Combi-514R; Hanil Science Industrial Co., Ltd., 
Daejeon, Korea) at 1500×g and 4 °C for 10 min. This 
cell-free supernatant was combined with cold 95% etha-
nol and incubated at 4 °C for 24 h. The supernatant was 
discarded after centrifugation at 1500×g and 4 °C for 
10 min to obtain precipitated GTase. Precipitated GTase 
was washed with 10 mL of 60 mM potassium phosphate 
buffer (pH 6.8). The GTase was homogenized with an 
additional 10 mL of 60 mM potassium phosphate buffer 
(pH 6.8) and stored at − 80 °C.

By analyzing the amount of insoluble glucan produced 
from sucrose during the enzymatic reaction, the GTase 
activity was determined. The substrate for the reaction 
was 1.25% (w/v) sucrose in a 60 mM potassium phosphate 
buffer at pH 6.8 with 0.025% NaN3. For the reaction, 
800 μL of the substrate solution, 50 μL of GTase, 50 μL 
of the testing sample, and 100 μL of distilled water were 
mixed and incubated at 37 °C for 24 h. After incubation, 

insoluble glucan was homogenized for 5 s using a Sonic 
Dismembrator (model 100; Thermo Fisher Scientific Inc., 
Waltham, MA, USA) with the power of scale 4. After 
centrifugation at 1500×g and 4 °C for 10 min, most of 
the supernatant was removed, leaving ~ 200 μL. The pel-
leted insoluble glucan was homogenized using sonica-
tion under the same conditions mentioned above. After 
transferring 200 μL into a 96-well polystyrene microplate 
(catalog number: CLS3628; Corning Inc., New York, 
NY, USA), absorbance at 540 nm was measured using an 
Opsys MR™ microplate reader. For the control experi-
ments, distilled water was substituted for the test sample. 
To calculate the relative GTase activity, the sample value 
was compared to the control value.

Content analysis of ellagic acid by high‑performance liquid 
chromatography
The concentration of ellagic acid in the Rubi Fructus 
extract was determined using high-performance liq-
uid chromatography (HPLC) in accordance with the 
method described in a previous report [45]. Each speci-
men was filtered using a SEPARA® vial filter (cata-
log number: MV32ANPPV002FC01; GVS Korea Ltd., 
Namyangju, Korea). The analytical column was YMC-
Triart C18 (catalog number: TA12S05-2546WT; YMC 
Korea Co., Ltd., Seongnam, Korea). The HPLC instru-
ment was Acme 9000 HPLC, which comprises a vacuum 
degasser and mixer (catalog number: SDV40A), gradi-
ent pump oven (catalog number: CTS30), auto-sampler 
[catalog number: YL9150 AS (Alias)], solvent delivery 
pump (catalog number: SP930D), and UV/Vis detector 
with dual wavelength (catalog number: YL9120) from 
Young Lin Instrument Co. (Anyang, Korea). The mobile 
solvents were 1% acetic acid (A) and acetonitrile (B). 
The following gradient steps were utilized for chemical 
separation: 90% (A):10% (B) at 0 min; 60% (A):40% (B) 
at 28 min; 40% (A):60% (B) at 39 min; 10% (A):90% (B) at 
50 min; and 90% (A):10% (B) at 55 min. The flow rate of 
the mobile phase was 0.7 mL/min, and a UV absorbance 
detector was used to detect the chemicals at 272 nm. 
The amount of sample injected was 10 μL, and the tem-
perature of the analytical column was 30 °C. The data 
were analyzed using Autochro-3000 software version 
2.0.0 (Young Lin Instrument Co.).

Evaluating synergistic biofilm formation inhibition using 
a checkerboard microdilution assay
Using a 96-well microplate, the synergistic activity of 
extract combinations was evaluated [46]. The relative 
decrease in biofilm formation due to a sample was calcu-
lated by comparison with the amount of biofilm forma-
tion of the untreated control [47]. Synergistic activity was 
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determined to occur when the relative inhibition value of 
a combination was more than double the relative inhibi-
tion value of each sample.

Kinetic analysis of GTase activity
Michaelis–Menten constants (Km) and maximum 
reaction rate (Vmax) of GTase were determined using 
a slightly modified version of a previously described 
method [48]. At 37 °C for 30 min, GTase activity was 
measured with sucrose concentrations ranging from 0 
to 1%, and the values of Vmax and Km were calculated 
using the Lineweaver–Burk equation. To determine 
the type of inhibition, the rate of change of the reac-
tion upon the addition of glycyrrhizin or ellagic acid 
was compared.

Statistical analyses
To calculate the mean value and standard deviation for all 
experimental results, the statistical program IBM® SPSS 
software (Ver. 25.0; SPSS Inc., Chicago, IL, USA) was 
utilized (SPSS Inc., Chicago, IL, USA). The results were 
determined using the t-test at the 95% confidence level.

Results and discussion
Inhibitory activity of Rubi Fructus extracts on biofilm 
formation and glucosyltransferase of S. mutans
Methods for preventing oral diseases caused by S. mutans 
include 1) inhibiting the growth of S. mutans, 2) inhibiting 
the biofilm formation of S. mutans (including inhibiting 
glucan synthesis by GTase), and 3) employing alternative 
sweeteners that cannot be exploited by S. mutans [49].

Fig. 1  Effect of Rubi Fructus extracts on biofilm formation and S. mutans growth. The quantity of biofilm was represented by crystal violet (CV) 
absorbance at 595 nm. Values that differ from the control with a 95% confidence level are denoted with an asterisk on top of the symbols. A biofilm 
production with water extract; B cell growth with water extract; C biofilm production with 50% ethanol extract; D cell growth with 50% ethanol 
extract: E biofilm formation with 90% ethanol extract; F cell growth with 90% ethanol extract
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In a previous study, ellagic acid rhamnoside from R. 
ulmifolius was found to inhibit the biofilm formation 
of Staphylococcus aureus [50], and the R. idaeus extract 
inhibited the biofilm formation of Candida albicans 
without antifungal activity [51]. However, Rubi Fructus 
extract did not inhibit the biofilm formation of seven 
bacterial strains: Pseudomonas libanensis, Serratia marc-
escens, Acinetobacter sp., Bacillus amyloliquefaciens, 
Hafnia paralvei, Obesumbacterium proteus, and Pseu-
domonas aeruginosa [52]. These findings suggest that the 
inhibitory activity of Rubus spp. extract against microbial 
biofilm is strain-specific.

Our previous study found that the methanol extract 
of Rubi Fructus reduced the GTase activity and biofilm 
formation of S. mutans [28]. However, methanol is an 
unsuitable solvent for the production of edible products. 
This study prepared a Rubi Fructus extract using water 
and ethanol as extraction solvents. S. mutans biofilm for-
mation (Fig. 1) and GTase activity (Fig. 2) were found to 
be effectively inhibited by a water extract of Rubi Fruc-
tus. Biofilm formation was inhibited in a concentration-
dependent manner by all Rubi Fructus extracts, but the 
growth of S. mutans was not inhibited at any of the con-
centrations examined (Fig. 1).

Ellagic acid of Rubi Fructus inhibiting biofilm formation 
and GTase activity of S. mutans
In previous studies, ellagic acid was shown to inhibit 
the biofilm formation of Escherichia coli [53], S. aureus 
[54], and Cutibacterium acnes [55]. In this study, the 

ellagic acid content of the extract was analyzed based 
on the solvent used for extraction (Table  1). The ellagic 
acid concentration in the water extract was the highest 
at 1.55 mmol/g, whereas it decreased as the ethanol con-
centration in the extracted solvent increased. The GTase 
inhibitory activity of Rubi Fructus extract was propor-
tional to its ellagic acid content (Table 1 and Fig. 2).

The 0.25-mM elagic acid concentration decreased bio-
film formation by 32% (Fig.  3A) and GTase activity by 
63%. (Fig.  3B). However, ellagic acid did not inhibit the 
growth of S. mutans in the same way that Rubi Fruc-
tus extract did (Fig. 3C). According to a previous study, 
ellagic acid inhibits the GTase activity of S. mutans [56] 
and S. sobrinus [57]. This study demonstrates that water 
is a superior extraction solvent for Rubi Fructus to inhibit 
biofilm formation and GTase activity of S. mutans and 
that ellagic acid is the active compound responsible for 
the extract’s inhibitory activity.

Rubi Fructus extract did not inhibit the growth of 
S. mutans (Fig.  1), nor did ellagic acid up to 0.25 mM 
(0.076 mg/mL) affect the growth (Fig.  3C). However, it 
has been reported that the minimum inhibitory con-
centration (MIC) of ellagic acid against oral bacteria, S. 
mutans, S. sanguinis, and S. salivarius is < 1 mg/mL, mak-
ing it more sensitive than Actinomyces viscosus and Lac-
tobacillus rhamnosus [58]. Notably, 30-μg/mL ellagic acid 
had no effect on the growth of E. coli but it inhibited bio-
film formation [53]. Low MIC concentrations and biofilm 
inhibition for ellagic acid in a previous study suggest that 
ellagic acid can specifically inhibit the growth of cari-
ogenic oral streptococci, such as S. mutans, S. sanguinis, 
and S. salivarius.

Synergistic inhibitory activity of Rubi Fructus 
and Glycyrrhizae Radix extracts
A 50% ethanol extract of Glycyrrhizae Radix inhib-
ited the growth and biofilm formation of S. mutans in a 
previous study [29] but had no effect on GTase activity 
(Supplementary Fig. 1). The extract yield of Glycyrrhizae 
Radix used was 19% in terms of solid content. These find-
ings suggested that Glycyrrhizae Radix extract and Rubi 
Fructus extract exert different inhibitory effects on the 

Fig. 2  Effect of Rubi Fructus extract on the GTase activity of S. 
mutans. GTase activity was determined by measuring the amount of 
insoluble glucan at a wavelength of 540 nm. The tested concentration 
of all extract was 2.5 g/L. Values that differ from the control with a 
95% confidence level are marked with an asterisk on top of the bars

Table. 1  HPLC analysis of ellagic acid content of Rubi Fructus 
extract

a)  Extraction yield (%) = weight of solid after extraction (g) / weight of Rubi 
Fructus used (g) × 100
b)  Amount of ellagic acid per gram of Rubi Fructus extract

Extract solvent Water 50% ethanol 90% ethanol

Extraction yield (%)a) 12.7 21.2 10.7

Ellagic acid concentra‑
tion (mmol/g)b)

1.55 1.17 1.10
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biofilm formation and GTase activity of S. mutans via dis-
tinct mechanisms, suggesting that they can be combined 
for synergistically increased effectiveness. The optimal 
combination ratio synergistically inhibiting biofilm for-
mation was identified using the checkerboard method 
(Supplementary Table 1). The combination of Glycyrrhi-
zae Radix extract at 0.3 g/L and Rubi Fructus extract at 
0.5 g/L exhibited synergistic activity (Fig. 4A). The activ-
ity of this combination was 9.1 times more effective than 
Glycyrrhizae Radix extract alone and 9.2 times more 
effective than Rubi Fructus extract alone.

Glycyrrhizin of Glycyrrhizae Radix has been reported 
to inhibit the cell growth, biofilm formation, and GTase 
activity of S. mutans [29, 59]. The combination of gly-
cyrrhizin and ellagic acid with synergistic inhibition of 
biofilm formation was also identified using the checker-
board technique (Supplementary Table  2). The activity 
of inhibiting biofilm formation was increased 13.7-fold 
and 2.8-fold, respectively, when 2 mM glycyrrhizin and 
0.025 mM ellagic acid were combined, compared to the 
activity of each compound alone (Fig.  4B). Considering 
the synergistic activity of glycyrrhizin and ellagic acid on 
S. mutans, they may contribute to the synergistic activity 
of Glycyrrhizae Radix and Rubi Fructus. MIC for Glycyr-
rhizae Radix extract against cavity-causing bacteria such 
as S. mutans, S. sobrinus, and Lactobacillus casei [40] 
was between 15.6 and 31.2 μg/mL. Lollipops contain-
ing Glycyrrhizae Radix extract decreased cavity-causing 
bacteria in the oral cavity [40]. In addition, Glycyrrhi-
zae Radix extract inhibited the growth of B. subtilis and 
C. acnes [60], indicating that it selectively inhibited the 
growth of bacteria and was not limited to oral micro-
organisms. Glycyrrhizin, a component of Glycyrrhizae 
Radix, has been demonstrated to have bactericidal activ-
ity against E. coli [61], B. subtilis [62], and S. epidermidis 
[62]. β-Glycyrrhetinic acid had MICs ranging from 16 
to 512 μg/mL for cariogenic oral streptococci, such as S. 
mutans, S. sobrinus, S. anginosus, S. sanguinis, S. salivar-
ius, S. gordonii, and S. oralis [63].

Fig. 3  Effect of ellagic acid on S. mutans biofilm formation (A), cell 
growth (B), and GTase activity (C). At a concentration of 0.25 mM, 
the impact of ellagic acid on GTase activity was examined (B). The 
amount of biofilm was represented by crystal violet (CV) absorbance 
at 595 nm. Six (A and C) and three (B) distinct experiments were 
used to calculate the values. A and B were analyzed statistically using 
Tukey’s test (A and B) or a paired t-test (C). Values that differ from the 
control with a 95% confidence level are marked with an asterisk on 
top of the symbols or bars
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Enzymatic inhibitory mechanism of glycyrrhizin and ellagic 
acid on GTase
To determine the Michaelis–Menten kinetic constant 
(Km) and maximum velocity (Vmax) of GTase isolated 
from S. mutans, the enzymatic activity was measured 
using various concentrations of sucrose, and the 
Lineweaver–Burk equation was used to plot the obtained 
results (Fig.  5). Without any control compounds, the 
Km and Vmax values of GTase were 0.99 mM and 0.218 
Abs540/mL/30 min, respectively. The Km value for gly-
cyrrhizin was 0.93 mM, which was comparable to that 
of the control GTase. However, the Km value for ellagic 
acid was 0.57 mM, which was 42% lower than that of the 
control GTase. Vmax values for glycyrrhizin and ellagic 
acid were 0135 and 0.105 Abs540/mL/30 min, represent-
ing decreases of 38 and 52%, respectively. These results 
indicated that glycyrrhizin is a noncompetitive inhibitor 
and ellagic acid is an uncompetitive inhibitor of GTase, 

indicating that these two compounds inhibit the enzyme 
in different ways.

In previous studies, inhibitors of GTase activity with 
diverse inhibitory mechanisms were described. For 
instance, polyphenols of oolong tea noncompetitively 

Fig. 4  Synergistic inhibition of biofilm formation by extract 
combinations against S. mutans. The synergistic inhibitory activity 
of Glycyrrhizae Radix extract and Rubi Fructus extract (A) and 
glycyrrhizin and ellagic acid (B) against the formation of biofilm by 
S. mutans. A control was administered, either distilled water (A) or 
DMSO (B). The amount of biofilm was measured by the absorbance 
of crystal violet (CV) at 595 nm. Values that differ from the control 
with a 95% confidence level are marked with an asterisk on top of 
the bars

Fig. 5  Inhibitory effects of glycyrrhizin (A) and ellagic acid (B) on 
the kinetics of the enzyme GTase. Changes in GTase activity were 
evaluated without (open square) and with chemicals (filled square). 
The y-axis represents the inverse of GTase activity, while the x-axis 
represents the inverse of substrate concentration (mM). GTase activity 
is measured as the quantity of insoluble glucan produced in 1 mL 
over a period of 24 h. The Lineweaver–Burk equations for control, 
glycyrrhizin, and ellagic acid were 1/V = 4.52 × 1/[S] + 4.58, 1/V = 
6.90 × 1/[S] + 7.40, and 1/V = 5.38 × 1/[S] + 9.51, respectively. The 
values were calculated from three independent experiments.



Page 8 of 10Ham and Kim ﻿BMC Complementary Medicine and Therapies           (2023) 23:22 

inhibited the glucan-binding domain of the GTase of 
S. mutans [64]. Meanwhile, tannic acid, gallic acid, and 
syringic acid inhibited the GTase activity of S. mutans 
through mixed-type inhibition [48]. Furthermore, 7-epi-
clusianone inhibited GTase B activity by mixed-type 
inhibition while noncompetitively inhibiting GTase C 
activity [65]. According to our previous research, vanillic 
acid, ferulic acid, and salicylic acid were uncompetitive, 
competitive, and noncompetitive inhibitors, respectively 
[28]. In this experiment, the addition of glycyrrhizin and 
ellagic acid from Glycyrrhizae Radix and Rubi Fructus 
did not significantly change pH. This study presents two 
different inhibitors of GTase, glycyrrhizin, a noncompeti-
tive inhibitor, and ellagic acid, a noncompetitive inhibitor. 
S. mutans biofilm formation was inhibited synergistically 
by extracts of Glycyrrhizae Radix and Rubi Fructus con-
taining these two different inhibitors as the main active 
substances, respectively.

Conclusions
This study revealed the synergistic activity of a combina-
tion of two different natural compounds as a potential 
method for inhibiting S. mutans’ formation of dental bio-
film. Rubi Fructus water extract inhibited GTase activity 
and biofilm formation without inhibiting the growth of 
S. mutans. Glycyrrhizin and ellagic acid were found to be 
noncompetitive and uncompetitive inhibitors of S. mutans 
GTase, respectively. The combination of glycyrrhizin of 
Glycyrrhizae Radix and ellagic acid of Rubi Fructus syner-
gistically inhibited biofilm formation, and the combination 
of Rubi Fructus extract with Glycyrrhizae Radix extract 
exerting different mechanisms of action showed a strong 
ability to inhibit biofilm formation at low concentrations. 
Thus, it is possible to develop effective products for pre-
venting oral diseases caused by S. mutans dental biofilm 
using the proposed combination’s synergistic activity.
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