
Jenab et al. 
BMC Complementary Medicine and Therapies           (2023) 23:16  
https://doi.org/10.1186/s12906-023-03833-z

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Complementary
Medicine and Therapies

Effects of opium use on one‑year major 
adverse cardiovascular events (MACE) 
in the patients with ST‑segment elevation MI 
undergoing primary PCI: a propensity score 
matched ‑ machine learning based study
Yaser Jenab1, Behnam Hedayat2, Amirali Karimi3, Sarah Taaghi4,7*, Seyyed Mojtaba Ghorashi5 and 
Hamed Ekhtiari6 

Abstract 

Background  Considerable number of people still use opium worldwide and many believe in opium’s health benefits. 
However, several studies proved the detrimental effects of opium on the body, especially the cardiovascular system. 
Herein, we aimed to provide the first evidence regarding the effects of opium use on one-year major adverse cardio-
vascular events (MACE) in the patients with ST-elevation MI (STEMI) who underwent primary PCI.

Methods  We performed a propensity score matching of 2:1 (controls: opium users) that yielded 518 opium users and 
1036 controls. Then, we performed conventional statistical and machine learning analyses on these matched cohorts. 
Regarding the conventional analysis, we performed multivariate analysis for hazard ratio (HR) of different variables and 
MACE and plotted Kaplan Meier curves. In the machine learning section, we used two tree-based ensemble algo-
rithms, Survival Random Forest and XGboost for survival analysis. Variable importance (VIMP), tree minimal depth, and 
variable hunting were used to identify the importance of opium among other variables.

Results  Opium users experienced more one-year MACE than their counterparts, although it did not reach statistical 
significance (Opium: 72/518 (13.9%), Control: 112/1036 (10.8%), HR: 1.27 (95% CI: 0.94–1.71), adjusted p-value = 0.136). 
Survival random forest algorithm ranked opium use as 13th, 13th, and 12th among 26 variables, in variable impor-
tance, minimal depth, and variable hunting, respectively. XGboost revealed opium use as the 12th important variable. 
Partial dependence plot demonstrated that opium users had more one-year MACE compared to non-opium-users.

Conclusions  Opium had no protective effects on one-year MACE after primary PCI on patients with STEMI. Machine 
learning and one-year MACE analysis revealed some evidence of its possible detrimental effects, although the 
evidence was not strong and significant. As we observed no strong evidence on protective or detrimental effects of 
opium, future STEMI guidelines may provide similar strategies for opium and non-opium users, pending the results of 
forthcoming studies. Governments should increase the public awareness regarding the evidence for non-beneficial or 
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detrimental effects of opium on various diseases, including the outcomes of primary PCI, to dissuade many users from 
relying on false beliefs about opium’s benefits to continue its consumption.

Keywords  Machine learning, Major adverse cardiovascular events, Mortality,Myocardial infarction, Opium, 
Percutaneous coronary intervention

Background
Opium was among the earliest plants used for its 
medicinal and recreational properties [1]. Derived 
from dried Papaver somniferum L. milky exudate, 
opium it is still ranked as the second common abused 
substance in the Middle East, just after tobacco 
[2]. This consumption trend is partly related to the 
proximity of this region to main production cent-
ers of opium, causing easier accessibility to this drug. 
Although the more conventional opium use have lost 
its popularity in many world regions, the family of opi-
oids account for the highest share of disease burden 
related to illicit drug use worldwide [3].

Many people who use opium believe in its protec-
tive effects against diseases, including cardiovascular 
morbidity, and such beliefs may account for the ten-
dency towards opium or reluctance to give up its use 
[4, 5]. Nevertheless, the studies oppose such claim. For 
instance, a meta-analysis of 41 studies found a 2.75 
(95% confidence interval (CI): 2.04–3.75) increased 
risk of coronary artery disease (CAD) in patients who 
use opium [6]. Several other studies also announced 
opium as a risk factor for increased cardiovascular 
and all-cause mortality [4–12]. Opium can exert its 
detrimental effects via numerous mechanisms, such 
as increasing inflammation, coagulation, and oxida-
tive stress, decreasing physical activity, and adverse 
hormonal and metabolic changes, etc., that are further 
expanded in the discussion [1].

Earlier researchers studied the effects of opium 
on patients undergoing coronary artery bypass graft 
(CABG) surgery and observed the adverse outcomes of 
patients who use opium in this setting [13, 14]. In one 
study the patients who used opium had higher 5-year 
major adverse cardiovascular events (MACE) and 
mortality [14], while in the other they had higher read-
mission rates [13]. However, no evidence exists regard-
ing the effects of opium on the outcomes of patients 
undergoing primary percutaneous coronary inter-
vention (PCI) after ST-segment elevation myocardial 
infarction (STEMI). Only one study exists in the elec-
tive PCI settings, but found no associations between 
opium use and one-year MACE. Therefore, we aimed 
to study one-year outcomes of these patients using 
conventional statistical analysis and machine learning 
strategies.

Methods
Study population
We conducted a retrospective cohort study to assess the 
effect of opium use and cardiovascular outcome in the 
first year after primary PCI for STEMI patients. A total of 
3466 patients who underwent primary PCI were initially 
included in this study, including 586 opium users and 
2922 non-opium users as controls.

Patients’ data was extracted from Tehran Heart Center 
Primary PCI database. The percentage of missing values 
were evaluated after dataset’s variables modifications. 
Variables with missing values of more than 10% were 
excluded. For conventional analysis, remaining missing 
values were imputed by replacing the value with mode 
and median for the categorical and numerical values, 
respectively. We chose median because the base analysis 
demonstrated the distribution of all the numeric vari-
ables were not normal. Then, we performed 2:1 propen-
sity score matching (PSM) yielding 518 opium users and 
1036 controls and all the analyzes in this study, including 
both statistical and machine learning methods, were per-
formed on these matched groups. All the analyzes were 
carried out using R statistical packages v4.0.4 (http://​
www.r-​proje​ct.​org/).

Baseline characteristics and propensity score matching 
(PSM)
To compare baseline characteristics between the opium 
users and control groups, student t-test and Mann-Whit-
ney U-test were used for numeric variables with normal 
and non-normal distributions, respectively, and Chi-
square test was used for categorical variables. Numeric 
variables with normal distribution were reported with 
mean and 95% confidence interval (CI) and numeric 
variable with non-normal distribution were reported 
with median and interquartile range (IQR). Categori-
cal variables were reported with count and percentage. 
Two-sided alpha value of 0.05 was considered as signifi-
cant level. Supplementary Table  1 shows the between-
group differences of baseline characteristics before and 
after matching. Only four variables of body mass index 
(BMI) (opium: Median: 27 vs. control: 27.11), triglycer-
ide (116 vs. 125), creatinine (1.0 vs. 0.9), and hemoglobin 
(15 vs 15.7) remained statistically significant between the 
groups, but their differences were clinically insignificant.

http://www.r-project.org/
http://www.r-project.org/
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PSM was conducted to minimize differences in base-
line propensity of observations to be assigned to the 
independent variable of interest, opium use. PSM was 
conducted by the logistic regression method with 2:1 
matching (2 control: 1 opium). Greedy nearest-neighbor 
method without replacement was performed to choose 
nearest distance of each observation propensity score in 
opium user and control groups.

Variables included in the matching process were 
selected based on the baseline characteristics compari-
son results, those with statistically and clinically sig-
nificant difference were included in a logistic regression 
model. There was a significant difference between opium 
users and control group in baseline prevalence of hyper-
tension, diabetes mellitus (DM), dyslipidemia, smoking 
history, gender, and baseline mean of fasting blood sugar, 
age, and low-density lipoprotein (LDL) levels (Table 1).

After applying PSM, absolute standardized mean differ-
ence (SMD) plot of the variables included in PSM demon-
strated perfect matching of the selected variables as all the 
SMDs reduced to less than 10% (Supplementary Fig. 1).

Conventional statistical analysis
Univariate cox regression analysis was performed for 
each of the independent variables, as follows:

�( t|x) = �0(t)s(x)

where s(x) is relative risk function, λ0(t) is baseline haz-
ard,  λ(t|x) is hazard function λ at time of t for an obser-
vation with covariate vector x is calculated.

Variables with significant p-value of less than 0.1 in 
each model and their model Wald test p-value of less 
than 0.1 were selected for multivariate cox regression 
analysis. Opium was included in the multivariate analysis 
regardless of its significant level in the univariate analy-
sis. Assessment of proportionality of hazard function was 
assessed by Shoenfeld’s residuals. None of the predictors 
violated proportionality of hazard functions.

Hazard ratio (HR) for opium use was calculated in 
the multivariate analysis and then, Kaplan-Meier (KM) 
curves were plotted for one-year mace MACE and its 
components (all-cause mortality, myocardial infarction 
(MI), target vessel revascularization (TVR), target lesion 
revascularization (TLR), and CABG).

Machine learning analysis
We conducted machine learning analysis as a sensi-
tivity analysis to assess robustness of the results. Two 
infamous machine learning algorithms, Survival Ran-
dom Forest and Extended Gradient Boosting for sur-
vival study (XGboost), with built-in variable importance 
and feature selection capability were selected. We used 
mlr3proba 0.4.0 version and its dependent packages 
(mlr3extralearner, mlr3pipelines, mlr3filter, etc.) for 

Table 1  Variables included in logistic regression to calculate propensity scores of observations in opium users and control groups, 
before and after matching

Before Matching After Matching

Variable Category Opium use Control p-value Opium use Control p-value

Hypertension <0.001* 0.9

No n = 341 (65.8%) n = 1505 (52.8%) n = 341 (65.8%) n = 677 (65.3%)

Yes n = 177 (34.2%) n = 1343 (47.2%) n = 177 (34.2%) n = 359 (34.7%)

DM <0.001* 1

No n = 354 (68.3%) n = 1623 (57%) n = 354 (68.3%) n = 708 (68.3%)

Yes n = 164 (31.7%) n = 1225 (43%) n = 164 (31.7%) n = 328 (31.7%)

Hyperlipidemia <0.001* 0.73

No n = 292 (56.4%) n = 1306 (45.9%) n = 292 (56.4%) n = 573 (55.3%)

Yes n = 226 (43.6%) n = 1542 (54.1%) n = 226 (43.6%) n = 463 (44.7%)

FBS 106 (IQR: 93–136) 115 (IQR: 98–157) < 0.001* 106 (IQR: 93–136) 111 (IQR: 96–137.5) 0.08

LDL 94 (IQR: 74–120.75) 101 (IQR: 79–122) 0.003* 94 (IQR: 74–120.75) 100 (IQR: 76–119) 0.38

Gender < 0.001* 0.32

Female n = 19 (3.7%) n = 731 (25.7%) n = 19 (3.7%) n = 27 (2.6%)

Male n = 499 (96.3%) n = 2117 (74.3%) n = 499 (96.3%) n = 1009 (97.4%)

Age 58 (IQR: 52–65) 61 (IQR: 53–69) <0.001* 58 (IQR: 52–65) 58 (IQR: 51–65.25) 0.96

Chronic smoking <0.001* 0.66

No n = 91 (17.6%) n = 1758 (61.7%) n = 91 (17.6%) n = 193 (18.6%)

Yes n = 427 (82.4%) n = 1090 (38.3%) n = 427 (82.4%) n = 843 (81.4%)
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implementing machine learning algorithms in the R soft-
ware. The advantage of these packages lies is their capa-
bility of implementing machine learning algorithms for 
survival studies which have different structure from clas-
sification studies because of counting time in addition to 
events.

Data splitting
The main dataset with missing values was randomly split 
into train and test parts with 80 and 20% of the total data, 
respectively. All hyperparameter optimization, train-
ing and benchmarking processes were conducted on the 
train set. Final assessment of the model’s accuracy was 
conducted on the test set.

Data pre‑processing
Categorical predictors were transformed to numeri-
cal using numerical encoding. To prevent data leakage, 
missing values were replaced in training and test data-
sets separately by median and mode for numerical and 
categorical variables, respectively. Median (IQR) was 
chosen due to non-normal distribution of both groups. 
To avoid significant multi-collinearity between numeric 
variables, correlation matrix of independent numeri-
cal variables was assessed and a correlogram was plot-
ted. The degree of collinearity between two variables 
by Pearson correlation coefficient was considered weak 
if 0 ≤ |r| < 0.3, moderate if 0.3 ≤ |r| < 0.7 and strong if 
|r| ≥ 0.7 [15]. Total cholesterol and LDL had significant 
co-linearity, so total cholesterol was dropped from fea-
tures (Supplementary Fig. 2).

Base learner
Decision Tree is one of the well-known algorithms of 
machine learning, constructed from nodes and leaves. It 
divides subjects by input features according to their out-
comes until best separation of observations with homo-
geneous survival outcomes achieves. Decision tree is 
the default base-learner (weak-learner) of survival ran-
dom forest algorithm. Splitting rule for studies which 
all observation may not have complete follow-up, as in 
survival studies, would be different from classification 
problems.

Two main methods of splitting nodes to daughter’s 
nodes in survival decision trees are node purity and 
node distance methods. Default splitting rule of deci-
sion trees of survival random forest of mlr3proba pack-
age is “log-rank” hypothesis tests which is a “node 
distance based” splitting-rule. Briefly describing, the 
null-hypothesis of log-rank test assumes that survival 
distribution and hazard functions of two separate 
groups of observations are identical. Here the algorithm 

performs log-rank test in each split, comparing hazard 
function of two leaves.

Considering hA as leaf “A” hazard function and hB as 
leaf B hazard function, then log-rank null and alternative 
hypothesis would be:

respectively, and assuming:

d
A
τ

No. of observed deaths in leaf A at time τ

e
A
τ

No. of expected deaths in leaf A at time τ

υA
τ

Variance of the No. of deaths in leaf A at time τ

υD list of unique event times in both leaves

Then, log-rank statistics would be [16]:

The result of log-rank test indicates degree of dissimi-
larity between two leaves in each split. The higher its 
score, the more different is hazard functions of leaves, 
hence more discriminative is the feature in the splitting 
process.

Default splitting rule of decision trees of XGboost algo-
rithm of mlr3proba package is full likelihood deviance 
measures of cox model, which we used in in our study. 
It is based mainly on estimating cumulative hazard func-
tion of each node by Cox model, and trying to maximize 
full proportional hazard likelihood. As it is discussed by 
LeBlanc and Crowely [16], it tries to maximized reduc-
tion in one-step deviance.

As a brief description, considering following definition:
∼
T  as a set of terminal nodes,
Sh as a set of observation labels in terminal node h,
λ0 as hazard function,
Λ0(t) as baseline cumulative hazard function,
ti observation time of individual i,
δi failure indicator for individual i, which would be zero 

or one,
Then full likelihood score of node h given tree T would 

be:

Then deviance of node h would be the difference 
between fitted model and saturated model maximum 
log-likelihood values:

H0 : h
A = hB

H1 : h
A �= hB

LogRank leaf A =
τ∈υD

dAτ − eAτ

τ∈υD
υA
τ

(1)L =
∏

h∈
∼
T

∏

i∈Sh
(�0(ti)θh)

(δi)e−Λ0(ti)θh
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where loglikelihood
(

∼
θh

)

 is the maximized log-likelihood 

and the baseline cumulative hazard function Λ0(t) is 
known.

The deviance residual of node h in terms of propor-
tional hazard function would be:

Therefore, the improvement of deviance of node h into 
left daughter nodes lnode(h) and right daughter nodes 
rnode(h) is

The algorithms perform binary splitting with all possi-
ble split of covariates to achieve maximum reduction in 
deviance measures in each split.

The default evaluation metrics of consecutive trees 
for survival XGboost algorithm in our study, was 
cox-nlog-likelihood.

Supplementary Fig.  3 illustrates two of the decision 
trees plotted in our study as an example.

Ensemble methods
The main advantage of decision tree is its low bias rates 
compared to other base-learners, but it has high variance. 
To reduce its variance, ensemble methods have been 
developed to aggregate the results of many trees and 
improve the prediction. We used survival random forest 
and XGboost (extended gradient boosting) for survival 
analysis as ensemble methods. Random forest utilizes a 
bagging (bootstrap aggregating) method and XGboost 
follows a gradient boosting algorithm.

Hyperparameter optimization
Important machine learning algorithms’ hyperparam-
eters must be tuned before implementing the final model 
on the new test datasets. We utilized “random-search” 

R(h) = 2

{

loglikelihoodh(saturated) − loglikelihoodh

(

∼

�h

)}

R(h) =
1

N

∑

i∈Sh

[

𝛿ilog

(

𝛿i

̂Λ1
0

(

ti

)

𝜃h

)

−

(

𝛿i −
̂Λ1
0

(

ti

)

𝜃h

)

]

R(split, h) = R(h)− [R(lnode(h))+ R(rnode(h))]

tuning strategy with terminating rule defined as 50 
iterations to optimize hyperparameters of each the 
algorithms.

Important hyperparameters for random forest algo-
rithms were assessed for optimization and those contrib-
uting to improved model’s accuracy, were provided to the 
algorithm, including number of variables to choose ran-
domly in each splits (“mtry”) and minimum number of 
objects in each terminal node(“nodesize”) (Table 2). In a 
spot check assessment of data, the out-of-bag error rate 
of survival random forest stabilized after about 250–300 
trees (Supplementary Fig. 4), so we defined 1000 trees as 
number of trees to be generated for random forest.

For XGboost algorithm, eleven hyperparameters were 
assessed for optimization (including nrounds, max_
depth, min_child_weight, etc.) and those contribut-
ing to improved model’s accuracy were provided to the 
algorithm.

To reduce the probability of data leakage and over-fit-
ting during optimization, “nested cross-validation” with 
10 inner folds and 3 outer folds was conducted to assess 
the improved accuracy of XGboost model by each hyper-
parameters (Fig. 1). For the survival random forest, sim-
ple 10 folds cross-validation was used (Fig. 2).

Benchmarking
To compare machine learning (ML) algorithms with reli-
ability, it is necessary to ensure that train and test datasets 
are the same for all of the algorithms. With Benchmark-
ing, one can apply resampling methods on main dataset, 
assuring all algorithms are being implemented on exactly 
the same train/test set in each resampling run. Then, we 
extract the overall average results of resampling in each 
set of populations.

We included non-tree-based cox proportional hazard 
model (Although, this time with full set of features) in 
benchmark resampling to enable the comparison of our 
two ML methods (i.e Survival Random Forest, XGboost) 
with traditional cox proportional hazards method used 
in our study. We conducted benchmark resampling using 
3-folds cross-validation.

Table 2  Results of hyperparameter Optimization. The hyperparameters are sorted from lowest to highest based on the resulting 
model’s accuracy in each step

Survival Random Forest Value Accuracy Survival XGboost Value Accuracy

No. of trees 1000 62.5% No. of consecutive trees 195 58.8%

No. of variables in each split 5 63.7% Maximum depth of tree 15 60.6%

Min No. of objects in each terminal node 27 65% Minimum child weight 7 61.8%

Gamma 0.35 63.5%

Eta 0.1 64%
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Two measurement indices for survival studies were 
selected, Harrell’s C-index and Uno’s C-index to compare 
the algorithms. These are somehow equivalent to area 
under the curve (AUC) used for classification algorithms.

Harrell’s C-index, is an algorithm which is used to 
assess time to event studies performance. The main con-
cept behind Harrell’s C-index is that a pair of subjects 
with different time of event experience, so called “com-
parable” subjects according to time of event, would have 

different calculated risk of experiencing event. The less 
time an event occurs, the higher the risk one subject 
would have. Therefore, a “comparable” subject’s pair risk 
estimation is expected to be “concordant” to their time of 
events.

Harrell’s C-index calculates ratio of “concordant” to 
“comparable” pairs, meaning how much the model has 
accurately measure the risks that are concordant to time 
of events [17].

Fig. 1  Nested cross validation for hyperparameter optimization of XGboost model with 3 outer resampling loop and 10 inner resampling loop

Fig. 2  Ten-folds cross validation for hyperparameter optimization of survival random forest model
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In the above equation, Tobs
i ,Tobs

j  are time to event 
for observation i and observation j respectively, and 
Mobs

i ,Mobs
j  are calculated risks for observation i and 

observation j. The result of I(…) would be zero or one 
according to comparison results.

Features ranking
Results of training of the train set were used to conduct 
variable importance. For random forest, out-of-bag sam-
ples during creating trees were used for variable impor-
tance method.

For survival random forest, we utilized permuta-
tion variable importance (VIMP) as described by Brei-
man et  al. [18], tree minimal depth methodology, and 
variable hunting to rank variables based on their level of 
importance.

Permutation importance assesses model accuracy 
(error rate) before and after permuting (random shuf-
fling) of each variable; the more deterioration occurs in 
the model accuracy, the more important permuted vari-
able is.

As described by Breiman et al. [18], considering follow-
ing definitions:

t: one of the trees where t ∈ {1, …, ntree.}
B
(t) : out of bag (oob) sample for t

Xj: variable j in tree t
ŷ
(t)
i = f (t)(xi) : predicted value of observation i before 

permutation of its value of Xj
ŷ
(t)
i,πj

= f (t)
(

xi,πj

)

 : predicted value of observation i after 
permutation of its value of Xj

Then variable importance of Xj in tree t is calculated as 
follows:

Then for each variable, mean variable importance score 
is calculated as follows:

which is the mean variable importance score of v among 
all trees.

Ĉ =

∑N
i=1∆i

∑N
j=i+1I

(

Tobs
i < Tobs

j

)

I
(

Mi > Mj

)

∑N
i=1∆i

∑N
j=i+1I

(

Tobs
i < Tobs

j

)

(2)VI (t)
�

Xj

�

=

∑

i∈B
(t) I

�

yi = ŷ
(t)

i

�

�

�

�

�

B
(t)�
�

�

�

−

∑

i∈B
(t) I

�

yi = ŷ
(t)

i,𝜋j

�

�

�

�

�

B
(t)�
�

�

�

VI
(

Xj

)

=

∑ntree
t=1 VI (t)

(

Xj

)

ntree

For minimal depth method, a preliminary random for-
est is generated first, then VIMP of each variable is cal-
culated and is used to weigh each variable. Then routine 
random forest run is conducted but this time instead 
of randomly selecting variables in each node split, they 
are selected with a chance that is proportional to their 
assigned weights. It searches subtrees which their root 
nodes are split by variable v, so called maximal subtrees 
of variable v. A closest maximal subtree root of variable 
v to the main tree root is called minimal depth of vari-
able v. The smaller minimal depth, the more important 
the variable v in predicting the outcome.

We used 50 iterations of survival random forest for 
minimal depth method (using package ‘randomForest-
SRC’ Hemant Ishwaran, version 3.1.1).

Variable hunting (VH) method usually is implemented 
for high-dimensional dataset (number of variables 
remarkably more than subjects, e.g. 10 times), our data-
set was not high-dimensional, but we used this method 
to investigate the concordance between all methods of 
variable importance.

VH method in randomForestSRC package (one of mlr-
3proba dependency) follows this sequence: A prelimi-
nary forest is created to calculate VIMP of each variable, 
then another forest is created by selecting variables with 
chance proportional to their VIMP (weight). But this time 
instead of “depth”, relative frequency of selecting a variable 
is used to determine its importance, the more the rela-
tive frequency is, the more the variable is important. We 
defined 50 numbers of survival random forest iterations, 
and one preliminary tree was created before each iteration 
to calculate VIMP scores [using package ‘randomForest-
SRC’ Hemant Ishwaran, version 3.1.1]. Again, All VIMP 
scores were calculated by Breiman-Cutler permutation.

For XGboost algorithm, we used built-in “feature 
importance” function of XGboost package, which cal-
culate the relative number of a feature that selected for 
splitting nodes across all trees, and percentage of total 
gain increase in all splits of a feature.

Partial dependence plot (PDP)
We used partial dependence to assess the average mar-
ginal effect of selected top features on the target variable, 
MACE. For numerical features, it helps to find the pattern 
of relation between the features and outcome, as they are 
linear or non-linear. For categorical variables it helps to 
compare effects of each category on the target variable.

For numerical variables, considering xS as the feature(s) 
in the set S that we want to plot its/their relation(s) with 
the outcome variable, xC as vector of other features used 
in our ML model f̂  , partial function marginalizes ML 
output over various distributions of vector xC variables, 
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so the function would depends mainly on xS, our variable 
of interest [19]:

And estimation of partial function f̂xS by averaging 
marginal effects as [19]:

To compute the marginal effect of a categorical variable, 
we set the category of all observations  to the category 
that we are interested. For example, considering hyperten-
sion as a variable with two categories of 0 and 1, we calcu-
late PDP estimate of having and not having hypertension 
(i.e. 1 or 0). Then we replace hypertension status of all the 
observations to 1 at once, and perform prediction, and 
then to 0 and perform the prediction again  [19].

Web application and source codes
To demonstrate applicability of our study, we developed 
a web application which can be used to predict first year 
MACE of primary PCI patients by uploading proper data 
file by users or real-time completing a form of  features 
(webapp link: https://behnam-hedayat.shinyapps.io/pri-
mace or https://primace.aikadeh.com).The source code 
of statistical and machine learning analysis and the web 
application  are available in Supplementary Table 3.

Results
Conventional statistical analysis
Opium users experienced about 27% more MACE during 
one-year after primary PCI compared to their counterparts, 
although that was not proved to be significant in multivari-
ate cox regression model (Opium: 72/518 (13.9%), Control: 
112/1036 (10.8%), HR: 1.27 (95% CI: 0.94–1.71), adjusted 
p-value = 0.136) (Table  3). KM curves were plotted for 
one-year MACE (Fig. 3) and its components (Supplemen-
tary Fig. 5), all without significant differences between the 
groups. One-year need for CABG after primary PCI was 
the most notably different component of MACE between 
the groups, although it was not significantly changed, but 
it suggests a trend toward more one-year need for CABG 
in patients who used Opium compared to non-users (HR: 
1.56 (95% CI: 0.98–2.5), adjusted p-value = 0.063) (Table 4).

Machine learning analysis

Random forest results
On variable importance performed on out of the box 
(OOB) samples, opium use had positive VIMP score 
and ranked 13th among other variables (Fig. 4). Opium 

f̂xS (xS) =

∫

f̂ (xS , xC)dP(xC)

f̂xS (xS) =
1

n

∑n

i=1
f̂
(

xS , x
(i)
C

)

use also ranked 13th by minimal depth method (Fig. 5); 
and therefore, the results in variable importance and 
feature selection were concordant (Fig.  6). Opium use 
was ranked 12th in the variable hunting method (Fig. 7). 
Figure  8 Partial dependence plots illustrates marginal 
effects of opium use and four top variables example on 
one-year MACE. The plot shows that opium users had 
increased MACE compared with non-opium users.

Nelson-Aaren estimator and KM curves demonstrated 
nearly similar overall survival curves. Continuous ranked 
probability score (CRPS) and Brier score plots over time 
in OOB subjects, demonstrated acceptable prediction 
accuracy of the SRF model over time (Supplementary 
Fig. 6).

XGboost results
Opium ranked 12th among other variables using its 
built-in variable importance method on the training set 
(Fig. 9).

Performance analysis
Benchmarking on train dataset with nested (repeated) 
cross validation resampling demonstrated that random 
forest method outperformed cox proportional hazards 
(conventional analysis) and XGboost. XGboost had the 
lowest performance, although the performance of the 
methods did not differ much (Harrell’s C-index: random 
forest: 63.0%, Cox proportional hazards: 61.2%, XGboost: 
59.2%) (Supplementary Table 2, Supplementary Fig. 7).

On the unseen test set, random forest model achieved 
a Harrell’s C-index of about 69.4%, about 7% more than 
the observed value in benchmarking. XGboost Harrell’s 
C-index value was similar to its value on the bench-
marking with about 60%. Cox proportional hazard 
analysis was also performed on train and test dataset 
with all the independent variables. Its Harrell’s C-index 
was 66%.

Values of Harrell’s C-index between survival random 
forest and the two other models were significantly dif-
ferent, while XGboost and Coxph models were not sig-
nificantly different regarding their Harrell’s C-index 
(Table  5). We then performed a time-dependent ROC 
analysis and assessed ROC AUC at six and 12 months 
after each model. As it is evident, at these time points, 
survival random forest remarkably outperformed other 
two models (Fig. 10).

Discussion
Overall, this study suggests that opium use offers nei-
ther benefits nor strongly affirmed detrimental effect 
on the rate of MACE during first year following pri-
mary PCI, although our results arose possibilities of 
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Table 3  Results of Cox regression MACE analysis for different variables, including opium use

Univariate Multivariate

Variable Category HR (CI 95%) p-value Wald p-value HR (CI 95%) p-value

Clopidogrel use 0.041 *
Yes 1.362 (1.015–1.828) 0.039 * 1.51 (0.95–2.39) 0.081

Pain to Door time 1 (0.999–1) 0.053 * 0.028 * 1 (1–1) 0.028 *
Calcium channel blocker use 0.368

Yes 1.381 (0.707–2.698) 0.345

Nitrate use 0.138

Yes 1.254 (0.932–1.687) 0.134

HDL 0.993 (0.977–1.009) 0.393 0.389

FBS 1.004 (1.002–1.005) <0.001* <0.001* 1 (1–1) 0.025 *
LDL 0.996 (0.992–1.001) 0.132 0.128

Triglyceride 0.999 (0.997–1.001) 0.243 0.215

BMI 0.981 (0.947–1.016) 0.273 0.27

Creatinine 1.203 (1.074–1.349) 0.001 * 0.014 * 1.24 (1.08–1.42) 0.002 *
Hemoglobin 0.837 (0.778–0.901) <0.001* <0.001* 0.89 (0.82–0.97) 0.006 *
Statin use 0.21

Yes 1.204 (0.901–1.608) 0.209

COPD 0.677

Yes 0.754 (0.187–3.038) 0.691

Aspirin use 0.09 *
Yes 1.288 (0.96–1.727) 0.092 * 0.76 (0.49–1.18) 0.219

Beta blocker use 0.125

Yes 1.259 (0.94–1.685) 0.122

ACEI/ARB use 0.055 *
Yes 1.328 (0.994–1.773) 0.055 * 0.86 (0.56–1.33) 0.499

Hypertension 0.009 *
Yes 1.485 (1.109–1.987) 0.008 * 1.3 (0.94–1.8) 0.118

DM 0.004 *
Yes 1.553 (1.158–2.083) 0.003 * 1.12 (0.76–1.64) 0.567

Hyperlipidemia 0.917

Yes 0.985 (0.736–1.317) 0.917

Family history of MI 0.198

Yes 0.761 (0.496–1.169) 0.213

IHD 0.002 *
Yes 1.623 (1.207–2.182) 0.001 * 1.47 (1.06–2.04) 0.023 *

Final TIMI2 score <0.001*
1 0.37 (0.25–0.548) <0.001* 0.64 (0.4–1.02) 0.059

Gender 0.084 *
Male 0.523 (0.268–1.022) 0.058 * 0.78 (0.38–1.6) 0.499

Age 1.029 (1.016–1.042) <0.001* <0.001* 1.02 (1–1.03) 0.014 *
Chronic smoking 0.059 *

Yes 0.713 (0.506–1.003) 0.052 * 0.85 (0.59–1.22) 0.385

Initial TIMI2 score 0.043 *
1 0.79 (0.455–1.372) 0.403 0.79 (0.45–1.39) 0.416

2 0.644 (0.428–0.969) 0.035 * 0.62 (0.41–0.95) 0.027 *
3 0.556 (0.308–1.004) 0.052 * 0.56 (0.31–1.02) 0.058

PCI Result <0.001*
Unacceptable 3.528 (2.344–5.308) <0.001* 2.66 (1.63–4.35) <0.001*
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Table 3  (continued)

Univariate Multivariate

Variable Category HR (CI 95%) p-value Wald p-value HR (CI 95%) p-value

Culprit vessel 0.454

LADnp 0.774 (0.506–1.182) 0.236

non. LAD 0.951 (0.682–1.326) 0.767

IABP 0.034 *
Yes 7.339 (1.82–29.589) 0.005 * 2.75 (0.64–11.83) 0.174

Cardiogenic shock 0.073 *
Yes 12.528 (1.75–89.672) 0.012 *

Door to Device time 0.999 (0.997–1.001) 0.311 0.263

GPIIbIIIa inhibitors use 0.918

Yes 1.017 (0.732–1.414) 0.918

Opium use 0.074 *
Yes 1.314 (0.977–1.767) 0.071 * 1.27 (0.94–1.71) 0.125

Abbreviations: HR Hazard ratio, CI Confidence interval, HDL High-density lipoprotein, FBS Fasting blood sugar, LDL Low-density lipoprotein, BMI Body mass index, 
COPD Chronic obstructive pulmonary disease, ACEI Angiotensin-converting enzyme inhibitor, ARB Angiotensin receptor blocker, DM Diabetes mellitus, MI Myocardial 
infarction, IHD Ischemic heart disease, TIMI Thrombolysis in Myocardial Infarction, PCI Percutaneous coronary intervention, LAD Left anterior descending coronary 
artery, LADnp Non-proximal LAD, IABP Intra-aortic balloon pump

* Wald p-value of less than 0.1 was the cut-off point for univariate analysis. Significant level for the multivariate analysis was p < 0.05

Fig. 3  Kaplan–Meier (KM) curves of one-year MACE of the patients who underwent primary PCI after ST-segment elevation MI separated by opium 
users and controls
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detrimental effects of opium after primary PCI. Opium 
use ranked 12 or 13 in the machine learning analyses 
and was not among the most influential risk factors (ie. 
top ten variables). Despite the fact that opium use dem-
onstrated a trend towards higher one-year MACE in the 
conventional statistical analysis, the difference was not 
significant.

In our study we tried to make opium user and control 
groups as homogeneous as possible in terms of baseline 
features, especially those features having known major 
contribution to cardiovascular events. One main draw-
back of using variable ranking by machine learning mod-
els is that such methods do not consider confounding 
factors and do not adjust and control possible contribu-
tion of other variables to the outcome. Hence, we cannot 
ascertain that opium has independent adverse effect on 
first year MACE following primary PCI.

This finding is important, as many opium users believe 
in opium’s protective effects against several diseases and 
rely on this factor as a motivation for continued con-
sumption. For example, a study in Iran found that 78.3% 
of the opium users believe that opium has positive effects 
in glycemic and hypertension control [4], while no such 
benefits were observed in the studies [5].

No previous study examined the association between 
opium use and primary PCI outcomes. A retrospective 
cohort in our center did not find associations between 
opium use and one-year MACE in males undergoing 
“elective” PCI, although the authors did not adjust the 
groups’ age as a potential confounder [20]. Mousavi 
et  al. also found no increased in-hospital and six-
month adverse outcomes after thrombolytic therapy 
for STEMI in patients addicted to opium compared to 
controls [21]. However, several studies on stable coro-
nary artery disease (CAD), including a meta-analysis 
[6], found that opium use positively correlated with 
the risk of developing atherosclerotic plaque and CAD, 
the severity, and the risk of mortality from CAD [6–8, 
10–12]. Dose-response associations were observed 

between opium use and the extent of atherosclerotic 
plaques according to Gensini’s score [10], CAD sever-
ity by clinical vessel score [11], and cardiovascular and 
all-cause mortality [9]. Furthermore, Sadeghian et  al. 
reported opium use as the most important risk factor 
for premature CAD (< 45 years) among Iranian males 
[12]. Regarding acute coronary events (ACS), Roayaei 
et  al. concluded that disagreements existed if opium 
had adverse effects on patients’ outcomes; however, 
at least no studies reported protective properties for 
opium [1].

Unlike primary PCI, outcomes were studied in opium 
users undergoing CABG. Masoudkabir et  al. found 
higher 5-year mortality and MACE in patients who con-
tinued to use opium after CABG, but no such findings 
were observed in patients who quit opium use after their 
surgery [14]. Concurrently, Safaei et  al. reported higher 
readmission rates in opium users following CABG com-
pared to non-opium users [13].

Roayaei [1], Masoudkabir [5], and Nakhaee et  al. [22] 
reviewed several mechanisms that opium can exert its 
detrimental effects on the cardiovascular system: [1] 
Increased inflammatory cytokines and decreased anti-
inflammatory mediators, [2] elevated oxidative stress, [3] 
increased levels of pro-coagulant molecules, [4] higher 
rates of insulin resistance and metabolic syndrome [5, 23] 
altered hormone levels, notably decreased testosterone, 
estrogen, and adiponectin levels and hyperprolactinemia, 
[6] increased homocysteine levels, [7] physical inactiv-
ity and sedentary life style, [8] altered pain sensation and 
delayed clinical presentations leading to adverse outcomes, 
[9] other impurities and substances, most notably lead, 
and [10] interference with some antiplatelet medications, 
including aspirin, clopidogrel, prasugrel, and ticagrelor. 
As mentioned, opium interferes with antiplatelets and 
this may increase the risk of coronary and stent thrombo-
sis. Therefore, appropriate studies on antiplatelet dosage 
modification may address this issue in patients who use 
opium. Neovascularization and collateral formation might 

Table 4  Effect of opium consumption on different one-year outcomes after primary PCI

Abbreviations: HR Hazard ratio, CI Confidence interval, MACE Major adverse cardiovascular events, MI Myocardial infarction, TVR Target vessel revascularization, 
TLR Target lesion revascularization, CABG Coronary artery bypass graft

*Significant level was p < 0.05

Outcome Opium Control HR (CI %95) p-value

MACE 72/518 (13.9%) 112/1036 (10.81%) 1.26 (0.93–1.7) 0.136

All-cause Mortality 23/518 (4.44%) 41/1036 (3.96%) 1.07 (0.64–1.81) 0.795

MI 12/518 (2.32%) 23/1036 (2.22%) 1.04 (0.51–2.08) 0.923

TVR 1/518 (0.19%) 1/1036 (0.1%) 0.85 (0.04–16.72) 0.912

TLR 4/518 (0.77%) 7/1036 (0.68%) 1 (0.29–3.48) 0.998

CABG 32/518 (6.18%) 40/1036 (3.86%) 1.56 (0.97–2.49) 0.065
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also play role in the effects of opium on patients with car-
diovascular disorders, as these mechanisms decrease the 
damage from acute and subacute ischemic events to the 
heart [24]. Opioids probably have pro-angiogenic proper-
ties that may hypothetically increase collateral coronary 

arteries [25], but may not be important regarding several 
mechanisms disfavoring opium use.

As mentioned earlier, opium using had no significant 
effect on MACE and its components among STEMI 
patients despite it has shown increasing all-cause mortality 

Fig. 4  Variable importance analysis by minimal depth method

Fig. 5  Feature selection by Random Forest algorithm
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Fig. 6  Variable importance vs. feature selection by minimal depth rankings of the included variables

Fig. 7  Variable hunting analysis by Random Forest algorithm
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among post CABG patients. We hypothesize that this find-
ing may be due to the already intensely high inflammatory 
state during STEMI active phase compared to less intense 
chronic pro-inflammatory effect of opium which would 
contribute to small portion of inflammatory milieu during 
STEMI. Also, relatively lower overall risk factors and lower 
coronary artery disease burden in STEMI patients, would 
represent lower chronic inflammatory state compared to 

Fig. 9  Variable importance analysis by XGboost algorithm

Table 5  Comparing Harrell’s C-index between the models

* Two-sided p-value of <0.05 is considered as significant

Models Z-score p-value

XGboost vs SRF 2.37 0.02*

XGboost vs Coxph −.0.99 0.32

SRF vs Coxph −3.04 0.002*

Fig. 8  Partial dependence plot of MACE and top four variables plus opium. According to the plot, opium users had higher one-year MACE rates 
than non-opium users
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those who need CABG. This makes CABG patients more 
likely to experience mortality due to various cause [26].

This study comes with some limitations. One is the 
retrospective nature of this cohort. Furthermore, we 
did not divide the patients to former and current opium 
users due to the lack of a universal definition and the 
design of our database. Another drawback is that 
machine learning methods cannot adjust for confound-
ing variables that could alter the observed outcomes. We 
recommend future researchers to conduct studies that 
compare former and current patients who use opium. 
On the other hand, in our opinion, the novelty of this 
study and its robust statistical methods may compensate 
for its shortcoming.

Conclusion
Opium had neither protective effects nor strongly 
affirmed detrimental effect on one-year MACE after 
primary PCI on patients presenting with STEMI. It 
was not ranked among top ten important variables in 
machine learning algorithms and had not significant 
effect in conventional statistical analysis on one-year 
MACE outcome despite adjusting for other variables. 
Accordingly, it could emphasize that treatment strat-
egies for patients presenting with ST elevation MI 

should not be different for those who are opium users 
vs. non users, a point that can be studied in the future 
and mentioned in future STEMI guidelines. On the 
other hand, patients who believe opium has certain 
health benefits and is useful after primary PCI, should 
be counseled about the lack of evidence for such claims 
and the possible adverse effects of opium.

Abbreviations
CI	� Confidence interval
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CABG	� Coronary artery bypass graft
MACE	� Major adverse cardiovascular events
PCI	� Percutaneous coronary intervention
STEMI	� ST-segment elevation myocardial infarction
PSM	� Propensity score matching
DM	� Diabetes mellitus
LDL	� Low density lipoprotein
SMD	� Standardized mean difference
IQR	� Interquartile range
HR	� Hazard ratio
KM	� Kaplan-Meier
TVR	� Target vessel revascularization
TLR	� Target lesion revascularization
AUC​	� Area under the curve
VIMP	� Variable importance
VH	� Variable hunting
OOB	� Out of the box
CRPS	� Continuous ranked probability score
PDP	� Partial dependance plot.

Fig. 10  Time-dependant ROC (receiver operating characteristic) curve at 6 and 12 months for each model
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