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Abstract 

Background:  Type 2 diabetes mellitus (T2DM) approximately constitutes 90% of the reported cases. 30-40% of 
diabetics eventually develop diabetic nephropathy (DN); accounting for one of the major causes of morbidity and 
mortality. Increased glucose autoxidation and non-enzymatic glycation of proteins in diabetic kidneys lead to the 
excessive generation of reactive oxygen species (ROS) that results in lipid peroxidation and activation of inflamma-
tory mediators which overwhelms the scavenging capacity of the antioxidant defense system (Nrf2/Keap1/HO-1). 
Centratherum anthelminticum commonly called as kali zeeri (bitter cumin) and its seeds are well known for culinary 
purposes in Asia (Pakistan). It has reported anti-inflammatory, antioxidant, and anti-diabetic activities. The present 
study has attempted to explore the in-vivo anti-inflammatory, antioxidant and antihyperglycemic potential of the C. 
anthelminticum seed’s fixed oil (FO) and its fractions in high fat-high fructose-streptozotocin (HF-HFr-STZ) induced 
T2DM rat model.

Methods:  The T2DM rat model was developed by giving a high-fat and high-fructose diet followed by a single 
intraperitoneal injection of streptozotocin (STZ 60 mg/kg) on 28th day of the trial. After 72 hours of this injection, 
rats showing fasting blood glucose (FBG) levels≥230 mg/dL were recruited into six groups. These groups were orally 
administered distilled water (1 mL/kg), Gliclazide (200 mg/kg), Centratherum anthelminticum seed (FO) and its hexane 
(HF), chloroform (CF) and ethanol (EF) soluble fractions (200 mg/kg each), respectively for 4 weeks (i.e. 28 days). Blood, 
serum, and kidney tissue samples of euthanized animals were used for biochemical, pro-inflammatory, and antioxi-
dant markers (ELISA, qRT-PCR, and spectrophotometric assays) and histology, respectively.

Results:  C. anthelminticum FO and its fractions reduced the lipid peroxidation, and improved the antioxidant param-
eters: enzymatic (SOD, CAT, and GPx), non-enzymatic (GSH), and mRNA expression of anti-inflammatory markers (Nrf-
2, keap1, and HO-1). mRNA expression of inflammatory and apoptotic markers (TNF-α, IL-1β, COX-1, NF-κB, Bax, and 
Bcl-2) were attenuated along with improved kidney architecture.

Conclusion:  C. anthelminticum can mitigate inflammation and oxidative stress in early DN. The anti-nephropathic 
effect can be attributed to its ability to down-regulate NF-κB and by bringing the Nrf-2 expression levels to near 
normal.
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Introduction
The prevalence and incidence of diabetes mellitus (DM) 
are steadily increasing globally. According to the Inter-
national Diabetes Federation (IDF), the prevalence of 
this multifactorial metabolic pandemic will increase to 
10.2% (578 million) and 10.9% (700 million) by the year 
2030 and 2045, respectively [1]. It is exerting a heavy 
toll on both the individual and society in the form of 
associated microvascular and macrovascular compli-
cations, especially diabetic nephropathy (DN). 30-40% 
of diabetics eventually develop DN, one of the most 
common and major causes of morbidity and mortality 
that eventually causes end-stage renal disease (ESRD) 
requiring either hemodialysis or renal transplant [2, 3].

Complex and multifactorial pathogenesis of DN is 
attributed to persistent hyperglycemia due to insuf-
ficient secretion or action of endogenous insulin [4]. 
The imbalance between secretion and action of insulin 
leads to increased glucose autoxidation, non-enzymatic 
glycation of proteins, and lipid peroxidation. Dam-
aged biomolecules trigger excess generation of reactive 
oxygen species (ROS) that overwhelms the scavenging 
capacity of antioxidant defense systems: Nrf-2/Keap1/
HO-1. This reflects not only in the form of cellular 
damage by hampering the endoplasmic reticulum (ER) 
and mitochondrial function rather also simultaneously 
triggering pro-inflammatory nuclear factor-kappa B 
(NF-κB), apoptotic (Bcl-2 and Bax), and pro-oxidant 
signaling cascade [5–9]. Hence, these cellular perturba-
tions exert significant abnormalities on renal structure 
(podocytes, mesangial and tubular cells) which pheno-
typically presents as increased urinary albumin excre-
tion, decreased glomerular filtration rate (GFR), and 
increased peripheral arterial blood pressure with sub-
sequent ESRD [10–13]. Currently employed anti-gly-
cemic, anti-hypertensive and management modalities 
have failed to slow the progression of DN and improve 
the patient’s survival due to limited efficacy and side 
effects. This calls for holistic treatment and manage-
ment approaches more towards natural and medicinal 
plant-derived products with a focus on both cellular 
and molecular switches/signaling pathways that are 
involved in the pathogenesis of DN. The outlook men-
tioned above has the capacity to address metabolic, 
oxidative, and inflammatory insults which lie at the 
crux of pathogenesis; with the additive benefit of being 
relatively safe, with fewer side effects, and available at 
low cost. Moreover, several studies support the hypoth-
esis that phyto-molecules with potent antioxidant and 

anti-inflammatory activities can delay and/or halt the 
progression of DN [14, 15].

Twenty-six plants for the management of Diabetes 
mellitus have been identified in folk medicine from Ray-
alaseema [16]. Centratherum anthelminticum (syno-
nym: Vernonia anthelmintica, plant name corresponds 
to the latest revision mentioned in www.​thepl​antli​st.​
org and http://​mpns.​kew.​org), an annual, erect, robust 
herb is one of them. It is commonly known as kalijiri, 
bitter cumin or Purple Fleabane. Seeds of this herb are 
most widely used to treat skin conditions, gastrointesti-
nal problems, diabetes, fever, pulmonary fibrosis, and in 
the removal of worms and parasites, etc. [17]. It is also 
widely used as an ingredient in polyherbal formulations 
(PF) from India (Krumighattini, Rasaganthi Mezhugu, 
Perukala rasayanam and Kayakalp) [18–22], Sri Lanka 
(Navratri Kalka) [23] and China [24, 25].. It has been 
used in the traditional system of medicine to treat dia-
betes [26]. Sabu MC and Bhatia et  al. had claimed that 
oral administration of the aqueous extract (100, 200, and 
500 mg/kg, respectively) of seeds for more than 7 days 
in alloxan-induced diabetic rats significantly decreased 
(39%) serum glucose levels [27, 28]. However, Bhatia et al. 
found no significant change in glucose levels at higher 
doses; and he also found that polyphenolic enriched 
fraction of seed (50–200 mg/kg) containing quercetin, 
kaempferol, caffeic acid, gallic acid, proto-catechuic acid, 
ellagic acid, and ferulic acid exerted antidiabetic effect 
by inhibiting α-amylases and intestinal α-glucosidases 
in rat models [29]. Similarly, in 2010 Fatima et al., using 
streptozotocin-induced diabetic rat models showed sig-
nificant antidiabetic (decreased levels in plasma glucose, 
HbA1c, plasma insulin, and hepatic glycogen) and anti-
hyperlipidemic (decreased levels in cholesterol, triglyc-
erides, LDL, VLDL, HDL, free fatty acids, phospholipids, 
and HMG-CoA reductase) activity of ethanolic extract 
and bioassay-directed fractions of C. anthelminticum 
(20 mg/kg) as compared to glibenclamide [30]. Antihy-
perlipidemic, antiatherogenic and antioxidant activi-
ties of ethanolic and crude extract of the seeds were also 
explored in high-fat diet-induced hyperlipidemic animal 
models with increasing doses from 200 to 600 mg/kg 
[31]. Carrageenan, cotton pellet and Freund’s adjuvant-
induced paw edema, granuloma and arthritis in rats were 
the inflammatory models used by Otari et  al. group to 
explore the effect of C. anthelminticum on inflamma-
tion [32]. The seed extracts also inhibited increasing lev-
els of nitric oxide and inflammatory markers like IL-1β, 
IL-6, and TNF-α. Furthermore, the antioxidant potential 
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explored by various groups in different time frames have 
shown that seeds extracted with methanol and ethanol 
and leaves extracted with hexane, chloroform, acetone, 
and methanol have free radical scavenging activity evi-
dent by DPPH and FRAP assays [19, 27, 33]. No in-vivo 
study exists in which the effect of C. anthelminticum on 
the innate antioxidant defense mechanisms has been 
explored at molecular level. Similarly, in the literature, 
only one ethno-medicinal study has been documented 
in which the oil from the seed of C. anthelminticum has 
been employed to treat skin disorders [34]. Therefore, 
the present study has attempted to explore the in-vivo 
antidiabetic, anti-inflammatory, antioxidant and anti-
apoptotic potential of fixed oil (FO) extracted from C. 
anthelminticum and its hexane (HF), chloroform (CF), 
and ethanol (EF) in high fat-high-fructose-streptozotocin 
(HF-HFr-STZ)-induced T2DM rat model. Special atten-
tion was given to explore the nephroprotective effect of 
C. anthelminticum at the molecular/cellular level using 
a high fat-high-fructose-streptozotocin (HF-HFr-STZ)-
induced T2DM rat model. Hence, the aim of the present 
study was to examine the effect of C. anthelminticum 
seed oil in mitigating the risk of end-organ complications 
observed in DM.

Materials and methods
Plant material
Seeds of C. anthelminticum were purchased from Hamd-
ard Dawakhana, Saddar, Karachi. Identification was con-
firmed by the experts from the Department of Botany, 
University of Karachi, Karachi-75,270, Pakistan (voucher 
specimen: KU/BCH/SAQ/02).

Reagents
Chloroform (Cat. no: 102447), glucose (Cat. no: D9434, 
dextrose), and trichloroacetic acid (TCA, Cat. no: T6399) 
were obtained from Merck & Co (New Jersey, US). Hex-
ane (Cat. no: 296090, ethanol (Cat. no: V001229), DMSO 
(Cat. no: 276855), STZ (Cat. no: S0130), ketamine (Cat. 
no: K1884), xylazine (Cat. no: X1126), gliclazide (Cat. 
no: G2167), hydrochloric acid (HCl, Cat. no: 320331), 
hydrogen peroxide (H2O2, Cat. no: H1009), Ellman’s 
reagent (DTNB, 5,5′-dithiobis nitrobenzoic acid, Cat. 
no: D8130), glutathione (Cat. no: G4251), sodium azide 
(Cat. no: 13412), sodium arsenate (Cat. no: A6756), per-
chloric acid (Cat. no: V001526), hydroxylamine reagent 
(Cat. no: 159417), dichromate-acetic acid reagent (Cat. 
no: 223964), epinephrine (Cat. no: E4250), thiobarbituric 
acid (TBA, Cat. no: T5500) and TRIzol® Reagent (Cat.
no: T9424) were procured from Sigma Aldrich Corp (St. 
Louis, MO, USA).

Extraction and fractionation
The purchased and identified seeds were thoroughly 
cleaned and weighed. The fixed oil of seeds was 
extracted using the Cold-press method at low tem-
perature (below 50 °C) [35]. The extracted fixed oil was 
defatted twice with hexane to obtain hexane soluble 
fraction and the hexane insoluble residues were frac-
tionated with chloroform to obtain chloroform solu-
ble and insoluble fractions, the insoluble fraction was 
further fractionated with ethanol. The obtained frac-
tions (hexane, chloroform, and ethanol) were subject to 
evaporation, and concentration using Büchi Rotavapor 
R-200 (62-65 °C). The fractions were kept in separate 
small vials labeled as HF (Hexane fraction), CF (Chlo-
roform faction), and EF (Ethanol fraction) for further 
use (Fig. 1C).

Acute toxicity study
An acute toxicity study of C. anthelminticum’s FO and 
its fractions were performed on Wistar Albino rats of 
both sexes, aged 6-10 weeks after they were fasted for 
14-16 hours. The study was conducted in compliance 
with the Organization of Economic Co-Operation 
and Development (OECD) guideline 420 for testing 
of chemicals [36]. The FO of C. anthelminticum and 
its fractions were dissolved in 0.05% dimethyl sulfox-
ide (DMSO) and orally administered once at a dose of 
500, 1000, 1500, and 2000 mg/kg, to their respective 
to groups rats (n = 6; 3 males, 3 females); whereas the 
control group only received 0.05% DMSO (1 mL/kg) 
as a vehicle. The animals were allowed free access to 
water and food, they were followed for 24 hours with 
strict observation in the initial 6 hours and daily there-
after for 2 weeks for signs of acute toxicity. Once daily 
for 14 days, the animals were observed for changes in 
physical appearance, behavior, mortality, (i.e. salivation, 
lethargy, etc.), and acute illness/injury. On the 15th day, 
animals were euthanized through intraperitoneal injec-
tions of Ketamine 60 mg/kg and Xylazine 7 mg/kg body 
weight [37]. The cardiac puncture was performed on 
euthanized animals to collect blood in EDTA-contain-
ing (plasma) and non-heparinized (serum) vacutainer 
tubes for hematological (CBC, HbA1c) and biochemical 
(Urea, creatinine, and LFT) analysis, respectively.

Oral glucose tolerance test (OGTT)
The experimental rats were divided into 7 groups each 
having 3 males and 3 females and they were fasted 
for 12 hours (for food). The animals were divided 
into control (glucose 2 g/kg), negative (glucose 2 g/
kg + DMSO1mL/kg), and positive control (glucose 
2 g/kg + standard drug: Gliclazide 200 mg/kg), and 
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treatment groups divided on the basis of doses of FO 
and its fractions mentioned below).

Five doses (50, 100, 200,400, and 600 mg/kg) of each of 
C.anthelminticum FO and its fraction (HF, CF, and EF) 
were orally administered to their respective groups fol-
lowed by a glucose load of 2 g/kg. Blood from the tail 
veins of rats was used to evaluate glucose levels at various 
time intervals (0, 30, 60, and 120 minutes) using a glu-
cometer (ACCU-CHEK Roche, Switzerland) [38]. Upon 
completion of the OGTT study percent glycemic change 
between the control and test, groups were calculated 
[39].

Animals
Male Albino Wistar rats (n = 65, body weight = 180-
280 ± 20 g) were procured from DUHS (Dow University 
of Health Sciences, Karachi). Polycarbonate cages were 
used to house the rats individually; they were accli-
mated to 12 hours of light and dark cycle for a week at a 
22 ± 3 °C temperature and 50 ± 10% humidity. During the 
acclimatization period and before dietary intervention 
rats had free access to sterilized water and a standard rat 
diet. The Ethical Review Board for Animal Research and 

Ethics, Dow University of Health Sciences approved the 
study (AR.IRB-21/DUHS/Approval/2021/037).

Induction of diabetes in male Wistar rats
Male Wistar rats (10-12 weeks old; body weight 180-
230 g) were separated into 6 treatment groups (n = 10 
each) and a control group (n = 5). According to the 
groupings, the rats in the control group were fed with 
a normal diet whereas the ones in the other six treat-
ment groups were fed a high-fat high-fructose (HF-HFr) 
diet for 28 days (i.e. 4 weeks). The HF-HFr diet used in 
this study mentioned in (Table  1) was the modification 
of protocol described by Yoo S et.al [40]. At the end of 
the 28th day, a single dose of STZ (60 mg/kg) in a cit-
rate buffer (0.1 M, pH 4.5) was injected intraperitoneally 
into the 12-hour fasted rats in the treatment groups to 
develop T2DM. On the third day (i.e.72 hours) after STZ 
injection, FBG levels were measured from the tail vein of 
each rat using a glucometer, and rats having (FBG) levels 
of 230 mg/dL and above were considered as diabetic and 
randomly divided into 6 treatment groups (Fig. 1A).

Fig. 1  Schematic presentation of A experimental design of the study, B animal groups, and C cold press extraction of C. anthelminticum seed fixed 
oil (FO) followed by preparation of hexane (HF), chloroform (CF), and ethanol (CF) fractions of FO
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Experimental design
Sixty-five male Wistar rats were divided into seven 
groups: 10 animals in each group, except the normal 
control group (5 animals). The C. anthelminticum FO 
and its fractions were administered orally at a dose of 
200 mg/kg to treatment groups from day 31-63 (i.e. 
4 weeks). The dosage for C. anthelminticum oil was cal-
culated on the basis of the acute toxicity study and oral 
glucose tolerance test results. The treatment was given 
daily for 4 weeks. During the study, body weight and 
FBG were measured weekly using a weighing machine 
and ACCU-CHEK glucometer, respectively.

Group 1(NC) - Normal control rats; normal diet and 
treated with distilled water (1 mL/kg).

Group 2 (DM Control) - Diabetic control rats; rats 
were fed HF-HFr diet and were administered 60 mg/
kg of STZ and orally administered 0.01% DMSO (1 mL/
kg).

Group 3 (DM Glic); Diabetic rats (fed HF-HFr diet 
and administered 60 mg/kg of STZ) were treated with 
the reference drug; Gliclazide (200 mg/kg).

Group 4 (FO); rats with DM (fed HF-HFr diet and 
administered 60 mg/kg of STZ) were treated with FO 
(200 mg/kg) of C. anthelminticum seeds.

Group 5 (HF); rats with DM (fed HF-HFr diet and 
administered 60 mg/kg of STZ) were treated with HF 
(200 mg/kg) of C. anthelminticum seed oil.

Group 6 (CF); rats with DM (fed HF-HFr diet and 
administered 60 mg/kg of STZ) were treated with CF 
(200 mg/kg) of C. anthelminticum seed oil.

Group 7 (EF); rats with DM (fed HF-HFr diet and 
administered 60 mg/kg of STZ) were treated with EF 
(200 mg/kg) of C. anthelminticum seed oil.

Biochemical analysis
On the 63rd day, the animals were sacrificed by intra-
peritoneal injection of Xylazine 7 mg/kg and Ketamine 
60 mg/kg [37]. The blood samples were collected by car-
diac puncture and centrifuged at 2000 x g for 15 min-
utes to separate serum for biochemical analysis. Serum 
insulin concentrations were determined according to the 
manufacturer’s instructions using a rat enzyme-linked 
immunoassay (ELISA) test kit (Bioassay Technology 
Laboratory Insulin ELISA kit Catalog no e0707RA). Gly-
cated hemoglobin (HbA1c) and renal function assess-
ment biomarkers such as serum creatinine and urea 
(mg/dL) were evaluated using commercially available 
spectrophotometric assay kits (Atellica Solutions, Sie-
mens Healthcare). Homeostatic Model Assessment of 

Table 1  Composition and ingredients of experimental diet. RD: rats received a regular diet and 30 Frc + 45 Fat: rats received a 45 kcal% 
fat with a 30% fructose diet

% RD 30 Frc 45 Fat 30 Frc + 45 Fat

g kcal g kcal g kcal g kcal

Protein 20 20 20 20 24 20 24 20

Carbohydrate 64 64 64 64 41 35 41 35

Fat 7 16 7 16 24 45 24 45

Total 100 100 100 100

kcal/gm 4 4 4.8 4.8

Ingredient g kcal g kcal g kcal g kcal

Casein, 80 Mesh 200 800 200 800 200 800 200 800

Soybean Oil 70 630 70 630 26 234 26 234

L-Cystine 3 12 3 12 3 12 0 0

Lard 0 0 0 0 174 1566 174 1566

Corn Starch 397.5 1590 229.5 918 137 548 0 0

Mineral Mix 35 0 35 0 35 0 0 0

Maltodextrin 10 132 528 100 400 100 400 37 148

t-Butylhydroquinone 0.014 0 0.014 0 0.014 0 0 0

Sucrose 100 400 0 0 100 400 0 0

Cellulose 50 0 50 0 50 0 50 0

Fructose 0 0 300 1200 0 0 300 1200

Choline Bitartrate 2.5 0 2.5 0 2.5 0 0 0

Vitamin Mix 10 40 10 40 10 40 10 40

Total 1000 4000 1000 4000 837.5 4000 797 3988
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Insulin Resistance (HOMA-IR), pancreatic β-cell func-
tion (HOMA β) and insulin sensitivity were calculated 
using the formulae: HOMA-IR = fasting insulin (μU/
mL) × fasting glucose (mmol/L)/22.5 [41], HOMA β-cell 
(20 x insulin U/L/blood glucose - 3.5) and Insulin sensi-
tivity = 1/log (fasting insulin U/L) x log (Fasting glucose 
mg/dl), respectively [41, 42]. The kidney tissues were 
excised, washed with ice-cold saline, and preserved in 
formalin 10% and phosphate buffer saline (PBS) for histo-
pathological and PCR analysis, respectively.

Histopathology of renal tissues
After animals were sacrificed, the collected renal tis-
sue was harvested, sectioned longitudinally, and fixed 
with 10% neutral buffer formalin for 48 hours. Followed 
by dehydration with gradient alcohol and transparen-
tize with xylene, waxed, embedded, and sectioned. The 
3 to 4 μm thick sections were Hematoxylin-Eosin (H&E) 
stained for general morphological analysis. The patholog-
ical changes in the kidney were observed under a com-
pound microscope [43].

Homogenate preparation of renal tissue
All the tissues excised from both the control and experi-
mental rats were placed in PBS and kept at − 80 °C. For 
homogenization, a 100 mM phosphate buffer with neutral 
pH was used. After complete tissue homogenization, the 
clear solution was centrifuged at 10,000×g for 15 minutes 
in order to remove any debris. The collected supernatant 
was used for further experimentation.

Determination of renal lipid peroxidation (LPO)
The reagent TBA:HCl:TCA (15%:0.2 N:0.37%) was mixed 
with the kidney homogenate with a ratio of 1:1:1 (v/v). 
The mixture was then heated in boiling water for 15 min-
utes and was brought to room temperature for centrifu-
gation at 5000 x g for 5 minutes. The absorbance was 
taken at 553 nm along with blank and the percent inhibi-
tion was calculated [44].

Determination of renal superoxide dismutase (SOD) 
activity
The enzymatic activity of the superoxide dismutase 
(SOD) was determined by Misra and Fridovich, 1972 
[45]. The prepared homogenate was mixed with 0.3 mM 
of freshly prepared epinephrine and 0.05 M carbon-
ate buffer (pH 10.2). The absorbance was calculated at 
480 nm every 30s for 150 s. The 50% inhibition of the rate 
of autoxidation of epinephrine measured as a change in 
absorbance /min was employed in calculating one unit of 
enzyme activity.

Determination of renal catalase (CAT) activity
The catalase activity in the supernatant of kidney 
homogenate was assayed spectrophotometrically at 
620 nm as described by Sinha [46]. The reaction mix-
ture (1.5 mL) consisted of 0.1 mL of supernatant of 
kidney tissue homogenate, 0.4 mL of 2 M H2O2, and 
1.0 mL of 0.01 M pH 7.0 phosphate buffer. The 2 mL of 
dichromate-acetic acid reagent (5% potassium dichro-
mate and glacial acetic acid were mixed in a 1:3 ratio) 
was added to the solution to stop the reaction and the 
absorbance was measured.

Determination of renal HMG‑CoA reductase activity
The activity of HMG-CoA reductase was determined 
in terms of the HMG-CoA/mevalonate ratio in kidney 
homogenate. The kidney homogenate was prepared in 
sodium arsenate solution. The homogenate was taken 
with an equal volume of dilute perchloric acid (PCA) 
mixed and incubated for 5 minutes at room tempera-
ture followed by a centrifuge at 3000 rpm for 10 min-
utes. 1.0 mL of kidney supernatant was collected in 
each of the two test tubes and allowed to react with 
1.5 mL of ferric chloride and 0.5 mL of 2 M hydroxy-
lamine reagent (alkaline pH = 5.5 in case of HMG-
CoA and acidic pH = 2.1 in case of mevalonate) and 
incubated for 10 min. Absorbance was determined at 
540 nm followed by a calculation of the HMG-CoA/
mevalonate ratio [47].

Determination of renal reduced glutathione (GSH) level 
and glutathione peroxidase (GPx) activity
The GSH levels in the kidney homogenate was deter-
mined by using the procedure of Ellman (1959). Kidney 
homogenate (1.0 mL) was mixed with 0.1 mL of 25% TCA 
and the precipitate was removed by centrifuge at 5000 
x g for 10 min. 0.1 mL of supernatant was removed and 
added to 2 mL of 0.6 mM DTNB (5,5′-dithiobis nitroben-
zoic acid) prepared in 0.2 M sodium phosphate buffer 
(pH 8.0). The absorbance was read at 412 nm [48].

GPx activity was measured by the method described 
by Rotruck et  al, 1973. The reaction mixture contained 
0.2 mL of 0.4 M Tris-HCl buffer pH 7.0, 0.1 mL of 10 mM 
sodium azide, 0.2 mL of tissue homogenate (homogenized 
in 0.4 M, Tris-HCl buffer, pH 7.0), 0.2 mL glutathione, and 
0.1 mL of 0.2 mM hydrogen peroxide. The contents of the 
mixture were incubated at 37 °C for 10 min. The reaction 
was arrested by 0.4 mL of 10% TCA and centrifuged. The 
supernatant was assayed for glutathione content by using 
Ellman’s reagent (19.8 mg of 5,5′-dithiobis nitrobenzoic 
acid (DTNB) in 100 mL of 0.1% sodium nitrate) [49].
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Determination of levels of NF‑κB p65 DNA binding activity
The ELISA of transcription factor NF-κB was carried out 
on the renal tissues homogenates as per manufacturer 
instruction (USCN Catalog no. SEB824Ra). The opti-
cal density of protein-bound NF-κB was measured at 
450 nm.

Reverse transcription quantitative real‑time PCR (RT‑qPCR) 
analysis
The kidneys of dissected animals were stored in PBS solu-
tion at − 80°C to preserve the RNA integrity. Total RNA 
was extracted using the TRIzol® Reagent. The integrity 
of the RNA was checked on 1% agarose gel electrophore-
sis. The quantitation of RNA was done with a nanodrop. 
Afterward, the complementary DNA (cDNA) was syn-
thesized using a Thermo Scientific RevertAid First Strand 
cDNA Synthesis Kit (Catalog no. K1691 Thermofisher 
Scientific, USA). The PCR cDNA with eight different 
sets of primers was carried out using SYBR™ Green PCR 
Master Mix (Applied Biosystems, Foster City, CA, USA) 
and was performed in StepOnePlus Real-time PCR sys-
tem. Table 2 contains the primer sets used in RT-qPCR. 
The gene HPRT-1 was used as a reference gene to meas-
ure the relative expression of the mRNA in a sample. The 
amplification PCR program included 1 cycle of 94 °C for 
10 min, followed by 35 cycles of 94 °C for 1 min, 60 °C for 
40 sec, and 72 °C for 30 sec, and a final elongation cycle at 
72 °C for 5 min using an Applied Biosystems, Foster City, 
CA, USA. Each sample was run in duplicates in order to 
ensure the reproducibility of the reaction [32].

Statistical analysis
The results are expressed as the mean ± standard error 
mean (S.E.M). Statistical analysis was carried out using 
the One-way ANOVA followed by least significant differ-
ence (LSD) multiple comparisons post-hoc test. A value 
of p < 0.05 was considered statistically significant. IBM 

SPSS v. 26 software (Chicago, IL, USA) was used for sta-
tistical analysis.

Results
Acute toxicity of C. anthelminticum fixed oil and its 
fractions
No toxicity and mortality due to C. anthelminticum fixed 
oil and its hexane, chloroform, and ethanol fractions 
were observed within 24-48 hours and for 15 days there-
after. All the administered doses were found to be safe up 
to 2000 mg/kg (Supplementary File 1).

Effect on Oral glucose tolerance test
In OGTT, 200 mg/kg of C. anthelminticum fixed oil and 
its fractions produced hypoglycemic state in rats chal-
lenged with a glucose load of 2 g/kg. The maximum 
reduction in blood glucose was observed between 30 to 
60 minutes whereas between 60 to 120 minutes glucose 
levels were maintained within euglycemic levels as com-
pared to the standard anti-diabetic drug (Gliclazide). 
A reduction in the concentration of blood glucose was 
found in all doses of C. anthelminticum fixed oil and its 
fractions from 50 to 600 mg/kg (p < 0.05) after 120 min 
(Supplementary File  2). Based on the present acute 
toxicity study (Fig.  2A), OGTT and previous studies 
of C.anthelminticum seed extract in rabbits, rats, and 
humans, 200 mg/kg was selected as a final dose of inter-
vention [39, 50–53].

Effect on fasting blood glucose, serum insulin, HOMA‑IR, 
HOMA‑β, and insulin sensitivity (IS)
Table  3 shows the level of FBG and serum insulin in 
rats from normal, diabetic, and treatment groups. Both 
insulin resistance and elevated blood glucose level are 
the initial indicators of HF-HFr diet-induced T2DM 
followed by administration of a single dose of STZ 
(60 mg/kg). The level of blood glucose significantly 
increased in the diabetic control group compared to the 

Table 2  Forward and reverse primers (5′ → 3′) for reverse transcriptase-real time PCR (RT-qPCR)

Sr.no Gene name Forward primer Reverse primer

1 IL-1β CAG​CTT​TCG​ACA​GTG​AGG​AGA​ GTC​GAG​ATG​CTG​CTG​TGA​GA

2 Nrf-2 GCA​AGA​GAC​TTC​CAG​CCA​GT TGC​CAT​TGC​ACA​ACT​CTT​TTC​

3 TNF-α TTC​TCA​TTC​CTG​CTC​GTG​GC CTC​CGC​TTG​GTG​GTT​TGC​TAC​

4 HO-1 CAG​AAC​CCA​GTC​TAT​GCC​CC TGT​GTG​GCT​GGT​GTT​AAG​GG

5 Keap1 CTG​TGA​CAC​TTC​TCC​TGG​GG GAG​AAG​CAG​GAA​CCA​GGC​AT

6 HPRT1 AGT​CCC​AGC​GTC​GTG​ATT​AGT​ CCA​GCA​GGT​CAG​CAA​AGA​AC

7 Bax CAC​GTC​TGC​GGG​GAG​TCA​ CTC​GAT​CCT​GGA​TGA​AAC​CCT​

8 Bcl2 CTT​TGA​GTT​CGG​TGG​GGT​CA AGT​TCC​ACA​AAG​GCA​TCC​CAG​

9 COX-1 AAC​CGT​GTG​TGT​GAC​TTG​CT TTG​CGA​TAC​TGG​AAC​TGG​GC
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normal control (p  < 0.05); whereas the serum insulin 
in diabetic rats as compared to control rats decreased 
(p < 0.05). Significant improvement in insulin levels and 
reduction in blood glucose was recorded in all the four 
diabetic treatment groups (FO, HF, CF, and EF) when 
compared to the diabetic control groups. Furthermore, 

the results shown in Table  3 signify that the HOMA-
IR index was significantly (p < 0.05) higher in the DM-C 
group when compared to the normal, treatment control 
and C. anthelminticum treated groups. Similarly, sig-
nificant (p  < 0.05) differences were observed between 
diabetic control and the C. anthelminticum seed fixed 

Fig. 2  A Oral glucose tolerance test of C. anthelminticum seed FO and its fractions was carried out at doses of 50, 100, 200, 400 and 600 mg/kg 
followed by glucose load 2 g/kg and was compared with control (glucose 2 g/kg), Glic positive control (gliclazide 200 mg/kg + glucose 2 g/kg) and 
DMSO negative control (0.05% DMSO 1 mL/kg + glucose 2 g/kg). B The effects of C. anthelminticum FO and its fractions on HbA1c, kidney weight, 
serum urea, and creatinine in HF-HFr-STZ induced diabetic rats. The data are expressed as the mean ± S.E.M. Statistical analysis was carried out using 
the One-way ANOVA followed by LSD multiple comparisons post-hoc test. *p < 0.05 versus Normal; #p < 0.05 versus DM Control

Table 3  Quantification of FBG, serum insulin, insulin sensitivity, resistance, and beta-cell function in T2DM rats treated with FO and its 
HF, CF, and EF (200 mg/kg) for 28 days

* shows the significant difference of p-value < 0.05 as compared to DM control

Groups FBS (mg/dL) Serum Insulin (mIU/L) HOMA-IR HOMA-B Insulin sensitivity

Control 83.1 ± 13* 9.24 ± 0.17* 1.59 ± 0.12 44.1 ± 3.45 1.76 ± 1.0

DM Control 270.6 ± 33 7.46 ± 0.06 4.8 ± 0.20 6.82 ± 0.42 0.98 ± 0.02

DM Glic 146.7 ± 98* 11.6 ± 0.48 2.43 ± 0.78* 48.5 ± 18.35* 1.44 ± 0.28*

HF 97.25 ± 29* 11.85 ± 1.61 3.8 ± 2.77 40.2 ± 25.31* 1.27 ± 0.39

EF 105.2 ± 37* 11.12 ± 0.96 5.36 ± 2.09 19.7 ± 11.5 0.96 ± 0.15

CF 182.8 ± 62* 11.15 ± 1.62 3.03 ± 1.06 37.1 ± 17.8* 1.27 ± 0.23

FO 82.3 ± 17* 10.8 ± 0.37* 1.82 ± 0.07* 53.4 ± 1.22* 1.67 ± 0.05*
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oil group. In the diabetic control group, the β cell 
functioning index and insulin sensitivity (IS) were sig-
nificantly compromised when compared to the normal 
group and the treated groups.

Effect on hemoglobin A1c level
The level of HbA1c level had increased in STZ-induced 
diabetic control rats whereas C. anthelminticum seed FO, 
CF, and HF treated groups (200 mg/kg b.w) exhibited a 
significant (p < 0.05) decline in glycated hemoglobin as 
compared to EF group in which there is no significant 
decrease found (Fig. 2B).

Effect on biochemical parameters and kidney weight
In this study, the renal function parameters including 
serum creatinine and urea were measured using com-
mercial assay kits. Data shows higher levels of urea in 
diabetic control rats and rats treated with chloroform 

fraction of seed oil than those in normal and other treat-
ment groups (i.e. FO, HF, and EF) whereas; no significant 
change was observed in creatinine levels in either dia-
betic or treatment groups. However, the diabetic control 
group exhibited a decrease in kidney weight as compared 
to the normal. On the other hand treatment with C. 
anthelminticum FO and its fraction reinstated the kidney 
mass to near normal (Fig. 2B).

Effect of C. anthelminticum fixed oil and its fraction 
on renal histology
Morphological changes in renal tissue of normal control 
rats determined using H&E staining revealed normal 
renal cortex and parenchyma with normal glomeruli and 
renal tubules (Fig.  3). The photomicrographs of kidneys 
from the HF-HFr-STZ-induced diabetic rats demon-
strated interstitial hemorrhage, degenerative changes, 
and focal inflammatory cell infiltration, whereas 4 weeks 

Fig. 3  Histopathological changes in HF-HFr-STZ induced diabetic rat kidneys treated with C. anthelminticum fixed oil and its fractions. The figure 
shows a photomicrograph of (A) Normal control (NC) kidney showing normal architecture, (B) Diabetic control (DM-C) showing congestion of 
blood with signs of inflammation, and (C) Treatment control (DM Glic) reveals attenuation in inflammation as compared to DM-C; and (D, E, F, and G) 
are the photomicrograph of C. anthelminticum fixed oil and HF, CF, and EF-treated kidney, respectively. Degeneration and inflammation observed in 
DM-C have subsided upon treatment with C. anthelminticum seed oil and its fractions. Renal cell architecture is near normal
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of treatment with C. anthelminticum FO and its fractions 
at a dose of 200 mg/kg improved the architecture of renal 
tissue.

C. anthelminticum fixed oil and its fractions mitigate 
diabetes‑induced renal oxidative stress
The biological activities of SOD, CAT, GPx, and GSH lev-
els in the kidney of HF-HFr-STZ diabetic rats decreased 
significantly (p < 0.05) by showing increased percent inhi-
bition of.

these enzymes when compared to control rats (Fig. 4). 
Oral administration of 200 mg/kg of C. anthelminticum 
fixed oil and its fractions (i.e. HF, CF, and EF) raised the 
activities of these enzymes (SOD, CAT, GPx) and GSH 

significantly (p < 0.05) in their respective groups by dis-
playing their less percent inhibition when compared with 
the diabetic control group (Fig. 4).

Effect of C. anthelminticum fixed oil and its fractions 
on LPO and HMG‑CoA reductase/mevalonate ratio
The level of malondialdehyde (MDA) which is the end 
product of LPO was significantly decreased in kidney 
tissue homogenate of the diabetic control group as com-
pared to the normal control (Fig. 4). After 4 weeks of C. 
anthelminticum fixed oil and its fractions treatment; the 
MDA level in the treatment groups increased, and a sig-
nificant difference was observed between the DM control 
group vs. treatment groups (p < 0.05). The HMG-CoA/

Fig. 4  Administration of C. anthelminticum FO and its fractions alleviate oxidative stress in DN. The percent inhibition of SOD, reduced GSH, GPx, 
CAT, and HMG-COA: Melvonate ratio except LPO in kidney tissue extracts of different groups. The results are expressed as the mean ± S.E.M. 
Statistical analysis was carried out using the One-way ANOVA followed by LSD multiple comparisons post-hoc test. Abbreviations: DM-C: 
DM + 1 mL/kg distilled water, DM-Glic: DM + 200 mg/kg Glicalized, FO: DM + 200 mg/kg C. anthelminticum fixed oil, HF: DM + 200 mg/kg hexane 
fraction, CF: DM-control + 200 mg/kg chloroform fraction and EF: DM + 200 mg/kg ethanol fraction. *p < 0.05 versus Normal; #p < 0.05 versus DM 
Control
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Mevalonate ratio improved in FO, EF, and CF groups as 
compared to DM-control (p < 0.05) (Fig. 4).

C. anthelminticum fixed oil and its fractions ameliorate 
diabetes‑induced renal inflammation
In order to analyze the anti-inflammatory potential of 
C. anthelminticum fixed oil and its fractions, a pro-
inflammatory NF-κB mediated pathway was explored. 
The relative mRNA expression of inflammatory mark-
ers IL-1β, TNF-α, and COX-1 were assessed by reverse 
transcriptase real-time PCR whereas; NF-κB p65 protein 
was measured using ELISA. The expression and pro-
tein levels of pro-inflammatory markers: IL-1β, TNF-α 
COX-1, and NF-κB p65, respectively were significantly 

increased in diabetic rats. Diabetic rats treated with Gli-
clazide, C. anthelminticum seed FO, and its fractions (i.e. 
HF, CF, and EF) showed significant reduction (p  < 0.05) 
in the expression of IL-1β whereas; the levels of TNF-α 
decreased but not significantly. Similarly, COX-1 showed 
a reduction (p < 0.05) compared to diabetic control. The 
level of pro-inflammatory transcription factor NF-κB p65 
improved with treatment (p < 0.05) as shown in Fig. 5.

C. anthelminticum fixed oil and its fractions prevent renal 
apoptosis
The mRNA expression level of pro-apoptotic Bax and 
anti-apoptotic Bcl-2 markers are illustrated in Fig. 5. The 
expression levels of Bax were elevated, whereas; Bcl-2 

Fig. 5  RT-qPCR showing cytosolic expression of (A) Nrf-2/Keap1/HO-1-mediated antioxidant pathway, (B) inflammatory (IL-β and TNF-α) and 
NF-κB (ELISA) pathway, and (C) apoptotic (Bcl-2 and Bax) pathway in the kidney homogenate from diabetic kidney treated with C. anthelminticum 
fixed oil and its fractions. The values are expressed as the mean ± S.E.M. Statistical analysis was carried out using the One-way ANOVA followed by 
LSD multiple comparisons post hoc test, *p < 0.05 versus Normal Control (NC); #p < 0.05 versus DM Control. Abbreviations: DM-C: DM + 1 mL/kg 
distilled water, DM-Glic: DM + 200 mg/kg Glicalized, FO: DM + 200 mg/kg C. anthelminticum fixed oil, HF: DM + 200 mg/kg hexane fraction, CF: DM 
+ 200 mg/kg chloroform fraction and EF: DM + 200 mg/kg ethanol fraction
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mRNA levels were found to be reduced in diabetic con-
trol rats when compared to normal rats. Following treat-
ment, the levels of Bax were significantly down-regulated 
in treatment control (Gliclazide) as compared to all the 
treatment groups (p  < 0.05). Compared to diabetic con-
trol, Bcl-2 expression levels were up-regulated in treat-
ment groups (Fig. 5C).

Antioxidant role of C. anthelminticum fixed oil and its 
fractions in protecting renal tissue through Nrf‑2/Keap1/
HO‑1 pathway
Oxidative stress along with inflammation lies at the crux 
of DN pathogenesis. Nrf-2/keap1/HO-1 being a major 
defense mechanism against oxidative insult was evalu-
ated to understand its role in the progression and devel-
opment of DN. Expression levels of Nrf-2, keap1, and 
HO-1 were measured in all the study groups. The levels 
of all the three antioxidant markers were significantly ele-
vated (p < 0.05) in the diabetic control group in compari-
son to the normal control (Fig. 5). C. anthelminticum FO 
and its fraction (i.e HF, CF, and EF) administered to treat-
ment groups showed a decrease in the expression of Nrf2, 
Keap1, and HO-1 as compared to the diabetic group 
(p < 0.05). The most significant decrease was observed in 
EF and CF (p < 0.05). The expression level of antioxidant 
markers in the treatment groups were near to normal as 
observed in the normal control group (Fig. 5A).

Discussion
Prolonged redox imbalances manifesting both as chronic 
oxidative and inflammatory stress in DM delineate the 
role of the same in the pathophysiology and progression 
of its most debilitating complication; diabetic nephropa-
thy [54, 55]. Most cited literature highlights its patho-
physiology in the context of chronicity but how the 
kidney tries to compensate in the early stage and what 
the consequences of early intervention with strategies 
other than the existing conventional one are inadequate. 
C. anthelminticum seed’s known antihyperglycemic, anti-
inflammatory, and antioxidant activities are likely to have 
the potential to help in the prevention and progression of 
T2DM [56, 57].

Innately at cellular and molecular levels, antioxidant/
anti-stress systems exist to try to mitigate the oxidative 
and inflammatory responses. The key player of this sys-
tem is nuclear factor erythroid 2-related factor 2 (Nrf-
2); a transcription factor that forms a complex with its 
substrate adaptor Kelch-like ECH-associated protein 1 
(Keap1) with Cullin (Cul3)-containing E3 ubiquitin ligase 
and is found in the cytoplasm [58–60]. Under basal con-
ditions, Nrf-2 is sequestered by Keap1 and degraded by 
E3 ubiquitin ligase [61]. In the face of xenobiotic, oxi-
dative, electrophile, and metabolic stress Nrf-2 escapes 

from the Keap/Cul3-Rbx1 ubiquitination in a dose-
dependent manner and the free (or newly) synthesized 
Nrf-2 translocates into the nucleus [61, 62]. Inside the 
nucleus, Nrf-2 heterodimerizes with one of the small Maf 
(musculoaponeurotic fibrosarcoma oncogene homolog) 
protein to recognize the enhancer sequence called anti-
oxidant response element (ARE) present in its regulatory 
region [63]. It has been cited in the literature that Nrf-2 is 
involved in the expression of nearly 500 genes involved in 
redox homeostasis, detoxification, anti-stress/anti-oxida-
tion, and indirectly/directly anti-inflammation activities 
[64, 65].

In the context of scientific evidence and findings from 
the experimental animal models of DN, it is observed 
that Nrf-2 adapts to changing oxidative and inflamma-
tory stress by trying to not only remain functional rather, 
also increase its expression levels. This adaptation is to 
overcome the glucolipotoxicity insult faced in the initial 
stages [66]. Jiang et al. has cited the similar findings [58]; 
they have also proposed that up-regulation and activa-
tion of Nrf-2 during the early stages of kidney insult is an 
attempt of innately existing antioxidant/anti-stress mech-
anisms to prevent the progression of DN. However, in the 
face of persistent glycemic, oxidative, and inflammatory 
insults, the protective mechanisms become saturated 
with excessive ROS, and the kidney insult progresses 
to advanced stages of ESRD [58]. It means the high and 
low expression levels of Nrf-2 parallel the early and 
advanced stages of DN. Furthermore, a redox-regulated 
transcription factor NF-κB, after its translocation inside 
the nucleus increases the expression of pro-inflamma-
tory cytokines: TNF-α, IL-6, IL-1β, COX-1, and COX-2. 
Rather, in the light of the emerging evidences it has been 
shown to facilitate Nrf-2 activity with the help of a small 
Ras-related C3 botulinum toxin substrate 1 (Rac1) pro-
tein with GTPase activity [67]. Rac1 not only mediates 
activation and nuclear translocation of Nrf-2 in keap1 
independent manner rather, also up-regulates HO-1 
expression (regulated by Nrf-2) and suppresses activa-
tion of the NF-κB pathway. Up-regulation of HO-1 medi-
ated by Nrf-2 and indirectly by Rac1, in turn, suppresses 
inflammatory activity mediated via NF-κB [68]. These 
cited findings suggest that Nrf-2 is a putative antioxidant 
target that could either prevent or slow the progression 
of DN. Therefore, a number of novel therapeutic mole-
cules are undergoing clinical trials. Recently, bardoxolone 
methyl showed promising Nrf-2 stimulating activity 
however, the trial could not continue due to adverse car-
diovascular events [69].

C. anthelminticum seeds fixed oil antioxidant activity 
in the context of Nrf-2 has not been explored. We, there-
fore, proposed to evaluate the anti-inflammatory, antihy-
perglycemic, anti-apoptotic, and antioxidant role of seed’s 
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fixed oil and its fractions in the diabetic kidneys via mod-
ulation of Nrf-2. HF-HFr-STZ-induced hyperglycemia 
leads to the suppression of antioxidant activities of SOD, 
CAT, GPx, and GSH by showing high percent inhibition 
of these enzymes. The HMG-CoA:Mevalonate ratio was 
also found decreased in the same group (DM-C) as HF-
HFr-STZ-induced hyperglycemia accelerates cholesterol 
biosynthesis as compared to other treated groups (EF, 
CF & FO). However, interestingly high percent inhibi-
tion of LPO was found in the DM-C group. In our study 
LPO for some reason did not occur which would nor-
mally be accepted to occur in diabetes-induced oxidative 
stress. The exhaustive activity of antioxidant enzymes 
(proteins) in tissue reflects the oxidative toll taken by the 
tissue which in turn is reflected upon the mRNA levels 
of transcriptional factor Nrf-2 and its downstream mas-
ter regulator of antioxidant mechanisms: HO-1(Fig. 5A). 
Therefore, it can be speculated that if the expression 
levels of SOD and GPx are measured they might also be 
increased as they are controlled by Nrf2 and are involved 

in ROS catabolism [70, 71]. Similarly, the increasing level 
of NF-κB reflects inflammatory stress which is seen as 
increased levels of IL-1β, TNF-α, and COX-1 whereas; 
decreasing Bcl-2 and increasing Bax show apoptotic 
activity (Fig. 5B and C, p < 0.05). C. anthelminticum fixed 
oil reversed these deleterious effects and improved blood 
glucose which could be attributed to improved beta-
cell function and insulin sensitivity without a decrease 
in serum insulin levels [39, 51, 52, 57, 72] (Table 3). The 
C. anthelminticum fixed oil and its fractions treatment 
also dampen the inflammatory damage and preserve 
the kidney structural damage observed at the tissue 
level (Figs.  5B and 3). These improvements could also 
be attributed due to its antioxidant potential. However, 
hyperglycemia, oxidative and inflammatory stress in our 
model increased the mRNA levels of Nrf-2, Keap1, and 
HO-1 (Fig.  5A); the increased Nrf-2 might be due to 
increased de novo synthesis (Fig. 6).

Dissecting the complex transcriptional activation and 
cellular expression of the Nrf-2 gene has delineated that 

Fig. 6  The schematic diagram is summarizing the actions of the intervention of C. anthelminticum seed oil on Nrf-2/HO-1 and NF-ĸB pathways. 
Upon exposure to oxidative, inflammatory, and glycemic stress expression levels of Nrf-2 increase and it translocates into the nucleus where it binds 
ARE to activate the expression of the HO-1 (antioxidant) gene (red arrow). Similarly, NF-ĸB is also translocated from the cytosol to the nucleus, where 
it activates the transcription of genes that include TNF-α, and IL-1β (red arrow). Following treatment with C. anthelminticum seed oil and its fractions, 
NF-ĸB activation is downregulated and it is reflected in the decrease in expression levels of Nrf-2/HO-1 to near normal (green arrow). Nrf-2-driven 
transcription of HO-1 is normalized which attempts to mitigate oxidative stress (green arrow). The perturbations of both NF-ĸB and Nrf-2/HO-1 
signaling points to putative cross-talk occurring between the two. However, the mechanism of this process in kidney disease remains unknown
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its promoter region, NFE2L2 in mice also contains the 
ARE sequence to which Nrf-2 may bind thus providing 
a positive feedback loop to not only amplify its effects 
rather its expression as well [73, 74]. Nrf-2 also regulates 
the transcription and expression of heme-oxygenase 1 
(HO-1) therefore, is regarded as the master regulator of 
the oxidative stress response [75]. Furthermore, it has 
been cited by Rushworth, S. A et.al; that increasing levels 
of NF-κB, c-Jun, and c-Fos in response to inflammation 
activates the transcription of the NFE2L2 gene, medi-
ating the increase in Nrf-2 expression [68]. Thus high-
lighting the putative cross-talk occurring between Nrf-2 
and NF-κB signaling pathways in order to maintain not 
only cellular redox homeostasis but also regulate cells’ 
response to inflammatory insult and stress [76]. How-
ever, this functional cross-talk between the said signaling 
pathways appears to be tissue and cell-type-specific, and 
much needs to be explained and explored about their cel-
lular and molecular interaction [77]. Very interestingly, 
the administration of C. anthelminticum seed oil and its 
fraction dampens the inflammation by decreasing the 
NF-κB which is also reflected in the expression of IL-1β, 
TNF-α, and COX-1 [67] (Fig. 5B). A decrease in inflam-
mation simultaneously brought the expression profiles 
of Nrf-2, keap1, and HO-1 to near-normal constitutive 
levels as observed in the normal control model (Fig. 5A). 
This finding supports the notion of the molecular and 
cellular communication occurring between the Nrf-2- 
NF-κB pathways; both are either working for or against 
each other to restore the redox balance [68, 78, 79]. The 
model lasted for approximately 9 weeks; therefore, the 
findings of the study are representing more or less acute 
changes both biochemically and at the tissue level.

The study findings have highlighted the response of 
antioxidant pathways in the context of acute insults 
much in the same way when the body’s immune system 
reacts to acute infectious insults; the innate and reflex-
ive defense mechanisms all go in a forward drive to cor-
rect the insult. This means an earlier intervention can be 
helpful to slow and even reverse the progression of DN. 
The observed increase in the expression levels of Nrf-2 in 
the diabetic model and near normalcy of Nrf-2, Keap1, 
and HO-1 by C. anthelminticum seed oil calls for explor-
ing its nuclear translocation and nuclear to cytoplasmic 
ratio. Furthermore, its biphasic levels with upregulation 
in early phases and down-regulation when DN progresses 
to ESRD needs to be explored. Similarly, the parallel 
behavior of Nrf-2 and Keap1 in diabetic and treated rats 
needs to be delineated for a better understanding of the 
mechanisms.

For further understanding of how the Nrf-2 mRNA 
expression profile changes acutely with changes in glu-
cose concentration in time; cells can be treated with 

increasing doses of glucose at different time intervals and 
this could be validated using experimental in-vivo mod-
els and measuring protein expression as well. Further-
more, for exploring mechanisms of C. anthelminticum 
seed oil both in the early and later stages of DN, transfec-
tion studies using validated Nrf-2 specific siRNA can be 
used for ex-vivo models along with in vivo models. This 
will help to understand whether C. anthelminticum oil is: 
(i) Nrf-2 nuclear translocation activator; (ii) inducing the 
de novo synthesis of Nrf-2; or (iii) it is disrupting the Nrf-
2-Keap1 complex alone without the induction of Nrf-2 
synthesis. Nrf-2-NF-κB communication needs to be dis-
sected as well to further understand the mechanism of C. 
anthelminticum oil; as this could be the possibility that 
rather than activating Nrf-2 directly, it is targeting NF-κB 
signaling, which is conversely activating the Nrf-2 path-
way in an acute state.

Conclusion
This study explored the potential antioxidant, anti-
inflammatory, and antihyperglycemic effects of the C. 
anthelminticum seeds fixed oil and its fractions. Despite 
the short intervention period of 4 weeks, the effects were 
promising and it can be said that seed oil has the poten-
tial to dampen inflammatory and oxidative stress in early 
DN. The fixed oil and its hexane fraction were found 
effective and had the satisfactory ability to reverse dia-
betic perturbations to near normal. The evidence cited in 
the literature and the results from this study give cred-
ibility to the valuable ethno-therapeutic properties of C. 
anthelminticum. The study also speculates the antine-
phropathic effect at an early stage can be attributed to its 
ability to down-regulate NF-κB which reflects by bring-
ing the Nrf2 expression levels to near normal. Moreo-
ver, it can also have the potential of having significant 
long-term or chronic effects as well, which needs to be 
explored further. Our laboratory is presently working on 
the isolation and identification of the bioactive compo-
nents from C. anthelminticum seed oil and its fractions 
for further evaluation.
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Hydrochloric acid; HF: Hexane Fraction; EF: Ethanol Fraction; CF: Chloroform 
Fraction; FO: Fixed Oil; DPPH: 1,1-Diphenyl-2-Picrylhydrazyl; FRAP: Ferric reduc-
ing antioxidant power assay.
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