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Extracts from Argentinian native plants 
reverse fluconazole resistance in Candida 
species by inhibiting the efflux transporters 
Mdr1 and Cdr1
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Abstract 

Background:  The development of multidrug resistance (MDR) associated with the overexpression of the efflux trans‑
porters Mdr1 and Cdr1 in Candida species impedes antifungal therapies. The urgent need for novel agents able to 
inhibit the function of both pumps, led us to evaluate this property in 137 extracts obtained from Argentinian plants.

Methods:  The ability of the extracts to reverse efflux pump-mediated MDR was determined with an agar chemosen‑
sitization assay using fluconazole (FCZ) resistant Mdr1- and Cdr1-overexpressing clinical isolates of Candida albicans 
and Candida glabrata as well as Saccharomyces cerevisiae strains selectively expressing Mdr1 (AD/CaMDR1) or Cdr1 
(AD/CaCDR1). The resistance-reversing activity of the most potent extracts was further confirmed using a Nile Red 
accumulation assay.

Results:  Fifteen plant extracts overcame the FCZ resistance of Candida albicans 1114, which overexpresses CaMdr1 
and CaCdr1, and AD/CaMDR1, with those from Acalypha communis and Solanum atriplicifolium being the most effec‑
tive showing 4- to 16-fold reversal of resistance at concentrations ≥ 25 µg/mL. Both extracts, and to a lesser extent 
that from Pterocaulon alopecuroides, also restored FCZ sensitivity in CgCdr1-overexpressing C. glabrata 109 and in AD/
CaCDR1 with fold reversal values ranging from 4 to 32 and therefore demonstrating a dual effect against Mdr1 and 
Cdr1. Both, A. communis and S. atriplicifolium extracts at concentrations ≥ 12.5 and ≥ 25 µg/mL, respectively, increased 
the intracellular Nile Red accumulation in all yeast strains overexpressing efflux pumps.

Conclusions:  The non-toxic and highly active extracts from A. communis and S. atripicifolium, provide promising 
sources of compounds for potentiating the antifungal effect of FCZ by blocking the efflux function of Mdr1 and Cdr1 
transporters.
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Background
Human health has been threatened by microbial infec-
tions since antiquity [1]. Among these, infections caused 
by fungal pathogens have had an enormous impact on 
public health [2, 3]. Approximately a billion people suf-
fer from mild superficial fungal infections, while more 
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than 150 million people, in particular immunocompro-
mised patients, have severe and life-]. These serious sys-
temic mycoses account for more than a million deaths 
per annum [threatening invasive diseases caused by fungi 
[45], with a 28–61% mortality rate attributed to candidi-
asis [6–8]. Although Candida albicans remains the main 
opportunistic fungus causing infections in hospitalized 
patients, other non-albicans species are emerging as 
prominent pathogens, with C. glabrata being the most 
common among these [9, 10]. A crucial factor that con-
tributes to the severity of Candida infections is the devel-
opment of multidrug resistance (MDR), in particul ar to 
one of the most relevant antifungal class, the triazoles 
and its first-line agent, fluconazole(FCZ) [11–13]. One of 
the most important MDR mechanisms leading to azole 
therapy failure is the overexpression of efflux pumps [12, 
14]. These membrane proteins can extrude antifungal 
drugs from fungi, preventing their intracellular accu-
mulation and thereby rendering these cells insensitive 
to their therapeutic effect [15]. The most common drug 
efflux transporters expressed by C. albicans are Mdr1 
and Cdr1 [14, 16]. The drug/H+ antiporter Mdr1, belongs 
to the major facilitator superfamily (MFS) of proteins 
[17]. Mdr1 comprises 12 TMHs linked by hydrophilic 
loops, with the antiporter motif for the translocation of 
drugs across the membrane, present in TMH5 [18]. Cdr1 
belongs to the pleiotropic drug resistance (PDR) subfam-
ily of the ATP binding cassette (ABC) family of transport-
ers, which hydrolyze ATP to provide the energy for the 
active drug efflux [19]. As an archetype ABC transporter, 
Cdr1 consists of two transmembrane domains (TMDs) 
each with six transmembrane helices (TMH) connected 
by extra and intracellular loops and two nucleotide bind-
ing domains (NBDs) [14, 20]. In C. glabrata, the C. albi-
cans Cdr1 ortholog CgCdr1, is the most prominent efflux 
pump implicated in azole resistance [21, 22].

Given the important role of drug resistance in the fail-
ure of fungal therapy, there is a critical need for alterna-
tive antifungals or the development of novel strategies 
to overcome the MDR phenotype conferred by efflux 
transporters.

Plants are a great resource for the discovery of com-
pounds with pharmacological potential [23–29], with 
some plant extracts or extract-derived components 
belonging to different chemical families, targeting Mdr1 
or Cdr1 [30–32]. The immense chemical diversity of sec-
ondary metabolites from plants and the low number of 
species explored to date [33], encourage the scientific 
community and the pharmaceutical industry to include 
these products in efflux pump inhibitor (EPI) discovery 
pipelines.

With the aim of identifying promising reservoirs of 
novel compounds with the capacity to circumvent MDR 

by inhibiting C. albicans and C. glabrata efflux transport-
ers Mdr1 and Cdr1, 137 extracts from plants of Argentina 
were evaluated.

Methods
Materials and reagents
Nile Red and betulin were purchased from Sigma-Aldrich 
(St. Louis, USA). The antifungal agent FCZ (purity 98.5%) 
was obtained from Parafarm (Buenos Aires, Argentina). 
FK506 (tacrolimus, purity ≥ 98%) was purchased from 
Carbosynth Ltd, UK. Sterile plastic laboratory products 
were purchased from Greiner Bio-One (Frickenhausen, 
Germany). All solvents were HPLC grade.

Plant materials and extract preparation
Aerial parts of plants (listed in Table S1, Supporting 
Information), were collected from December to March 
in the hills of Córdoba Province, Argentina, between 
-30.773428 to -31.797760 latitude and—64.109384 
to—64.546803 longitude. Plants were chosen with 
regards to their availability and the accessibility, and 
scarce or  absence of scientific information concerning 
their pharmacological and/or phytochemical profiles. 
Powdered material was extracted by maceration with 96% 
ethanol (3:1) for 48 h. The yield of each extract obtained 
after exhaustive solvent removal and expressed as per-
centage weight of plant material, is depicted in Table S1. 
Extract solutions were prepared in 96% ethanol just prior 
to use.

Strains and culture conditions
A clinical isolate of C. albicans, overexpressing CaMdr1 
and CaCdr1 (strain 1114) [34] and the CgCdr1-over-
expressing C. glabrata clinical isolate 109 [35, 36], both 
obtained from patients at the University Hospital of Uni-
versidade Federal de Juiz de Fora, Minas Gerais, were 
used. The strains were identified by MALDI-TOF mass 
spectroscopy [35, 36]. Minimum inhibitory concentra-
tion (MIC) values, determined with an agar dilution 
assay as described below, revealed that strain 1114 was 
515-times more resistant to FCZ than the sensitive strain 
C. albicans ATCC 90028 (MICFCZ = 500 and 0.97 µg/mL, 
respectively) [37], whereas strain 109 displayed 64-fold 
more resistance to FCZ than C. glabrata ATCC 2001 
(MICFCZ = 1,000 and 15.6 µg/mL, respectively) [37]. Both 
ATCC strains were used in the various assays for com-
parison purposes. In addition, a set of Saccharomyces cer-
evisiae strains overexpressing specific efflux pumps [38, 
39], were included to relate effects to particular pumps. 
A sensitive null mutant (AD1-8u−) in which seven MDR 
efflux pump genes are deleted [MICFCZ = 2.0  µg/mL 
(agar dilution assay – see below)], and its FCZ-resist-
ant derivatives: the AD/CaMDR1 strain that selectively 



Page 3 of 12Gil et al. BMC Complementary Medicine and Therapies          (2022) 22:264 	

overexpresses C. albicans Mdr1 (MICFCZ = 31.2 µg/mL by 
agar dilution assay) and the AD/CaCDR1 mutant strain 
that overexpresses C. albicans Cdr1 (MICFCZ = 250  µg/
mL by agar dilution test) were used. Clinical isolates 
1114 and 109 were kindly gifted by Dr. Antonio Ferreira-
Pereira from the Universidade Federal do Rio de Janeiro 
while the S. cerevisiae strains were kindly gifted by Dr. 
Richard Cannon from the University of Otago. The mean 
fluorescence intensity (MFI) of Nile Red retained in 
untreated cells corresponded to 342, 416, 2,280 and 2,900 
MFI units for strains 1114, 109, C. albicans ATCC 90028 
and C. glabrata ATCC 2001, respectively and to 13,700, 
4,730 and 52,900 MFI units for strains AD/CaMDR1, 
AD/CaCDR1 and AD1-8u−, respectively. The signifi-
cantly lower MFI values (p < 0.05) for the resistant strains 
than for the control strains indicated an active efflux of 
Nile Red from resistant cells.

All yeast strains were stored at -20  °C in Sabouraud 
dextrose broth (SDB; Difco Laboratories, Detroit, MI, 
USA) containing 10% glycerol. Prior to use, strains were 
incubated on Sabouraud agar (Laboratorio Britania, Bue-
nos Aires, Argentina), or in SDB, at 30 °C for 24 h. Cells 
from Sabouraud agar plates were used to prepare work-
ing suspensions in sterile saline.

Antifungal susceptibility assay
To assess if the extracts exerted antifungal activity per se, 
an agar dilution test was performed as described previ-
ously [28], with some modifications. Solid assays were 
preferred over liquid methods due to the characteris-
tics of some extracts as they interfered with absorbance 
readings and/or caused precipitation. In short, molten 
Sabouraud agar medium was added to duplicate extract 
solutions to reach a final concentration of 200 µg/mL and 
poured into wells in 12-well microtiter plates. Suspen-
sions of the target yeasts (2 µl of 6 × 105 cells/mL) were 
seeded on the surface of the solidified agar, and plates 
were incubated at 30 °C for 48 h. Negative control wells 
contained 5% final concentration of ethanol (the highest 
concentration of ethanol needed to completely solubi-
lize the necessary mass of extract to achieve 200 µg/mL 
that at the same time did not affect yeast viability). The 
whole panel of extracts was screened using the four Can-
dida strains and those extracts showing reversing prop-
erties on Mdr1- and Cdr1-expressing Candida strains, as 
determined by agar chemosensitization assay (see below), 
were further assayed using the S. cerevisiae mutants. The 
extracts showing a complete inhibition of microorgan-
ism growth in the primary screen, were then evaluated 
at decreasing concentrations to establish their MIC val-
ues. The MIC was defined as the minimum concentration 

of sample that completely inhibited the growth of the 
yeasts, as determined by visual observation.

To determine the MIC values for FCZ, which was also 
solubilized in ethanol, final concentrations of 125–2,000 
and 0.48–125 µg/mL for the pump-expressing and pump-
deficient yeasts, respectively, were used.

At least three separate replicates were performed for 
each assay.

Agar chemosensitization assay
The capability of the panel of extracts to sensitize the 
resistant clinical Candida strains to the toxic effect of 
FCZ, was determined using the antifungal susceptibil-
ity protocol except that the extracts at 200  µg/mL or at 
sub-MICs were added in combination with FCZ at 1/4 of 
the MIC (125 and 250 µg/mL in the assays with C. albi-
cans 1114 and C. glabrata 109, respectively). The extracts 
showing sensitization activity at the initial maximum 
concentration were further evaluated against all the tar-
get strains, including resistant S. cerevisiae mutants, with 
serial dilutions to determine their minimum effective 
concentration (MEC) with FCZ at varying sub-MICs (1/2 
to 1/64 of the MIC).

Betulin, is a triterpene isolated from Ligaria cuneifolia 
that showed potent inhibition of the human ABC trans-
porter, P-glycoprotein (P-gp) at concentrations ≥ 0.39 µM 
[29]. This property encouraged us to evaluate the capac-
ity of this compound to inhibit Mdr1 and Cdr1. As the 
concentration of betulin in the 200  µg/mL L. cuneifo-
lia (parasitizing Vachellia sp.) extract was 8.6  µg/mL 
(19  µM), betulin was tested at the concentration range 
6.25–50 µM.

FCZ sensitive Candida spp. and AD1-8u− were simul-
taneously assayed to determine if there were any syner-
gistic effects other than that involving the transporters 
(extracts were used at 200 µg/mL and FCZ at 1/4 MIC: 
0.24, 3.90 and 0.50 µg/mL in the assays with C. albicans 
90028, C. glabrata 2001 and AD1-8u−, respectively). 
FK506, an inhibitor of Cdr1 [40], was used as a positive 
control, while ethanol at 5% was used as negative con-
trol. Fold reversal (FR) values were calculated as the ratio 
between the MIC with FCZ alone and the MIC of FCZ in 
the presence of the extract, from the results obtained in 
at least three independent experiments.

Nile Red accumulation assay
The capacity of the most active extracts to cause cells to 
accumulate the fluorescent cell-associated substrate of 
Mdr1 and Cdr1, Nile Red [41–43], was monitored by flow 
cytometry. Briefly, resistant and sensitive yeasts grown to 
exponential phase in SDB were centrifuged, washed two 
times with distilled water and kept on ice for 2  h [34]. 
Then, cells were incubated in 96-well microtitre plates 
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(1 × 106 cells /well) containing SDB in the absence or 
presence of different concentrations of the extracts dis-
solved in DMSO at 30 °C for 2 h with shaking at 200 rpm. 
Then, Nile Red solution was added to each well (7  µM 
final concentration, with 2% glucose for assays with 
Cdr1) and cells were incubated at 30 °C for an additional 
1.5  h with shaking at 200  rpm. Cells treated only with 
extracts, to rule out autofluorescence, or with Nile Red 
and FK506 (20 and 40 µM) as a positive control, were also 
run. Negative controls contained 1% DMSO instead of 
plant extract. Then, the fluorescence intensity of 25,000 
cells was analyzed with a Life Technologies Attune-NxT 
flow cytometer with 96-well autosampler (Thermo Fisher 
Scientific, USA) using a 488  nm excitation laser and a 
574/26 nm emission filter. The Nile Red fluorescence sig-
nal was analyzed using the Flowjo software (Tree Star, 
Inc. Ashland, OR). The results were expressed as fluores-
cence intensity ratio (FIR) values, calculated as the ratio 
of the MFI of the Nile Red in cells with the addition of the 
extract to the MFI of the Nile Red in the negative con-
trol cells [44, 45]. The MFI values of the negative control 
cells were comparable to that of Nile Red alone. Mean 
values were obtained from at least three independent 
experiments.

Cytotoxic effect on mammalian cells
To determine the potential cytotoxic effect of the extracts 
on peripheral blood mononuclear cells (PBMCs), used as 
a model of normal cells, an MTT assay was performed as 
previously reported [44, 46]. A hemolysis assay was car-
ried out on red blood cells as described previously [47, 
48]. The extracts, dissolved in DMSO, were evaluated at 
concentrations ranging from 12.5 to 200 µg/mL, DMSO 
at 1% was used as the negative control. The use of human 
blood, was approved by the Catholic University of Cór-
doba Research Ethics Board and all the participants gave 
written consent.

Results
Antifungal activity of extracts
Prior to evaluating the Mdr1/Cdr1 inhibitory activity of 
the plant extracts, their potential antifungal properties 
were determined, as the crude extracts likely contained 
several compounds with different bioactivities, including 
possible fungitoxic effects.

The screening of the 137 extracts from the plants 
described in Table S1 showed that they did not inhibit the 
growth of C. albicans 1114, C. glabrata 109, C. albicans 
90028 or C. glabrata 2001 at the highest tested concen-
tration (200 µg/mL). Extracts that showed anti-Mdr1 or 
anti-Mdr1/Cdr1 effect (see below) were further evaluated 
against the S. cerevisiae strains. Only extracts obtained 
from Acalypha communis, Argemone subfusiformis, 

Baccharis salicifolia, Lithrea molleoides and Pterocaulon 
alopecuroides showed antifungal effects with MIC values 
of 50, 200, 200, 25 and 100  µg/mL, respectively, against 
both AD/CaMDR1 and AD1-8u−. Therefore, sub-MIC 
values of these extracts were used in the chemosensi-
tization and Nile Red accumulation assays using AD/
CaMDR1 and AD1-8u−.

Chemosensitization of yeast to FCZ
In order to identify plant-derived extracts as sources of 
efflux pump inhibitors to circumvent MDR in pathogenic 
yeasts, 137 extracts (Table S1) were investigated. The 
screen for the ability of these extracts to overcome drug-
efflux activity in the resistant C. albicans strain 1114, with 
increased expression of CaMdr1 and CaCdr1, showed 
that extracts obtained from A. communis, A. subfusi-
formis, B. salicifolia, Flourensia campestris, F. oolepis, L. 
cuneifolia, L. molleoides, Lorentzianthus viscidus, Mon-
nina dictyocarpa, P. alopecuroides, Solanum atriplicifo-
lium, S. palinacanthum and S. salicifolium improved the 
antifungal activity of FCZ, with fold-reversal (FR) of FCZ 
resistance values ranging from 2 to 16 (Table 1). All these 
extracts also decreased the MIC of FCZ for the resistant 
yeast AD/CaMDR1. While extracts from A. communis, 
L. cuneifolia, L. viscidus, S. atriplicifolium and S. salicifo-
lium, showed similar level of activity against strain 1114 
and AD/CaMDR1, the rest of the extracts gave higher FR 
and/or lower MEC values.

Extracts from A. communis and S. atriplicifolium dis-
played the most potent chemosensitizing effect, against 
both pump-expressing yeasts, with FR values rang-
ing from 4 to 16 and MEC values as low as 25  µg/mL 
(Table 1). Both extracts, together with that from P. alope-
curoides, were also effective in restoring FCZ susceptibil-
ity in the AD/CaCDR1 strain and in C. glabrata 109 that 
overexpresses CgCdr1 reversing the ABC/MDR resist-
ant phenotype up to 32-fold and showing activity even at 
25 µg/mL (Table 1). The rest of the extracts had no effect 
on the FCZ susceptibility of either AD/CaCDR1 strain or 
C. glabrata 109.

The chemosensitizing efficacy of A. communis and of S. 
atriplicifolium, extracts was comparable (p > 0.05) to that 
of the reference compound FK506 (Table 1).

The active extracts did not enhance the antifungal 
effect of FCZ on the sensitive strains C. albicans ATCC 
90028, C. glabrata ATCC 2001 or S. cerevisiae AD1-8u−.

On the other hand, betulin at 50  µM did not restore 
FCZ activity on any of the Candida spp. or S. cerevisiae 
strains.

Nile Red accumulation
In view of the potent FCZ resistance reversal activity dis-
played by A. communis and S. atriplicifolium extracts, the 
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Table 1  Reversal of FCZ resistance in yeast cells overexpressing Cdr1 and Mdr1 by extracts from Argentinian flora

Plant species Extract 
concentration 
(µg/mL)

FR

Candida albicans 
1114 (CaMdr1/
CaCdr1)

Saccharomyces 
cerevisiae AD/
CaMDR1

Saccharomyces 
cerevisiae AD/
CaCDR1

Candida 
glabrata 109 
(CgCdr1)

Acalypha communis 200 16 Nd 32 16

100 16 Nd 8 16

50 8 Nd 8 8

25 4 8 4 8

12.5 - - - -

Argemone subsusiformis 200 2 Nd - -

100 - 16 - -

50 - - - -

Baccharis salicifolia 200 2 Nd - -

100 - 32 - -

50 - 16 - -

25 - 4 - -

12.5 - - - -

Flourensia campestris 200 2 32 - -

100 - 32 - -

50 - 16 - -

25 - 4 - -

12.5 - - - -

Flourensia oolepis 200 2 16 4 -

100 - 16 - -

50 - 4 - -

25 - - - -

Ligaria cuneifolia (host Condalia buxefolia) 200 2 2 - -

100 - - - -

Ligaria cuneifolia (host Lithrea molleoides) 200 2 2 - -

100 - - - -

Ligaria cuneifolia (host Vachelia sp.) 200 2 2 - -

100 - - - -

Lithrea molleoides 200 2 Nd - -

100 - Nd - -

50 - Nd - -

25 - Nd - -

12.5 - 2 - -

6.25 - - - -

Lorentzianthus viscidus 200 2 2 - -

100 - - - -

Monnina dictyocarpa 200 2 8 - -

100 - 4 - -

50 - - - -

Pterocaulon alopecuroides 200 4 Nd 4 8

100 - Nd - 2

50 - 8 - -

25 - - - -
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ability of these to restore Nile Red accumulation in yeast 
cells was evaluated.

Both extracts strongly inhibited  Mdr1- and Cdr1-
mediated Nile Red efflux in strains C. albicans 1114, 
AD/CaMDR1, AD/CaCDR1 and C. glabrata 109, 
showing FIR values ranging from 1.54 to 3.68 at 

concentrations of 200  µg/mL (Table  2). As expected, 
the extracts showed no effect on Nile Red efflux in both 
sensitive Candida strains and in the null mutant of S. 
cerevisiae (Table  2). A. communis and S. atriplicifo-
lium extracts were still able to enhance Nile Red reten-
tion (p < 0.05) at 50 and 25  µg/mL, respectively, in C. 

Table 1  (continued)

Plant species Extract 
concentration 
(µg/mL)

FR

Candida albicans 
1114 (CaMdr1/
CaCdr1)

Saccharomyces 
cerevisiae AD/
CaMDR1

Saccharomyces 
cerevisiae AD/
CaCDR1

Candida 
glabrata 109 
(CgCdr1)

Solanum atriplicifolium 200 8 8 8 8

100 4 4 4 8

50 4 - - 8

25 4 - - 4

12.5 - - - -

Solanum palinacanthum 200 2 8 - -

100 4 - -

50 - - - -

Solanum salicifolium 200 2 2 - -

100 - - - -

FK506 40 µM 16 Nt 8 16

20 µM 4 Nt 8 8

FR Fold Reversal. -: absence of activity, Nd not determined due to the antifungal activity of the extracts at these concentrations, Nt not tested since FK506 is a classical 
inhibitor of ABC efflux pumps [40]

Table 2  Inhibitory effect of extracts from Acalypha communis and Solanum atripicifolium on Nile Red transport in yeast cells 
overexpressing Mdr1 and Cdr1 transporters

FIR Fluorescence intensity ratio, MFI mean fluorescence intensity of Nile Red in cells incubated with extract/MFI of Nile Red in cells incubated without extract. 
Significant differences with respect to the negative control were determined by using a paired one-tailed Student’s t test (***p < 0.001, **p < 0.01, *p < 0.05)

Yeast Plant species FIR

Extract concentration (µg/mL)

200 100 50 25 12.5 6.25

Candida albicans 1114 (CaMdr1/CaCdr1) Acalypha communis 2.36 ± 0.41** 1.69 ± 0.07** 1.24 ± 0.17* 1.07 ± 0.12

Solanum atripicifolium 3.68 ± 0.36*** 2.82 ± 0.45** 2.11 ± 0.46* 1.27 ± 0.17* 1.12 ± 0.15

Candida albicans ATCC 90028 Acalypha communis 0.30 ± 0.02**

Solanum atripicifolium 1.12 ± 0.19

Saccharomyces cerevisiae AD/CaMDR1 Acalypha communis 1.92 ± 0.23* 1.74 ± 0.07*** 1.53 ± 0.10* 1.17 ± 0.16

Solanum atripicifolium 1.93 ± 0.16* 1.64 ± 0.19* 1.26 ± 0.05* 1.11 ± 0.07

Saccharomyces cerevisiae AD/CaCDR1 Acalypha communis 2.10 ± 0.13* 1.94 ± 0.25* 1.52 ± 0.18* 1.25 ± 0.15* 1.10 ± 0.14* 0.80 ± 0.08

Solanum atripicifolium 2.01 ± 0.12* 1.68 ± 0.14* 1.34 ± 0.06* 1.07 ± 0.07

Saccharomyces cerevisiae AD1-8u− Acalypha communis 0.70 ± 0.05*

Solanum atripicifolium 0.81 ± 0.09

Candida glabrata 109 (CgCdr1) Acalypha communis 1.54 ± 0.18* 1.35 ± 0.10* 1.23 ± 0.12*** 1.26 ± 0.17* 1.16 ± 0.11

Solanum atripicifolium 2.11 ± 0.31* 2.15 ± 0.19* 1.39 ± 0.10* 1.10 ± 0.08

Candida glabrata ATCC 2001 Acalypha communis 0.30 ± 0.04

Solanum atripicifolium 0.62 ± 0.04
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albicans 1114; at 50 µg/mL in AD/CaMDR1; at 12.5 and 
50 µg/mL, respectively, in AD/CaCDR1; and at 25 and 
50 µg/mL, respectively, in C. glabrata 109 (Table 2 and 
Figs. 1 and 2).

The Nile Red accumulation in assays performed with 
A. communis at 200 µg/mL in C. albicans 1114 and AD/
CaCDR1 and with the same concentration of S. atri-
plicifolium in AD/CaCDR1 and C. glabrata 109 was 
similar (p > 0.05) to that in cells treated with FK506 
at 40  µM (FIR values of 2.05 ± 0.06***, 1.80 ± 0.36**, 
2.68 ± 0.06** against strains 1114, AD/CaCDR1 and 109, 
respectively). On the contrary, the accumulation of the 

dye was significantly lower (p < 0.01) in C. glabrata 109 
treated with A. communis extract evaluated at 200 µg/
mL and higher (p < 0.01) in C. albicans 1114 treated 
with S. atriplicifolium extract at the same concen-
tration, respect to yeasts treated with FK506 tested 
at 40  µM. At the MEC values, both extracts were as 
active (p > 0.05) as FK506 at 20 µM (FIR = 1.46 ± 0.12*, 
1.49 ± 0.12***, 1.58 ± 0.18* against strains 1114, AD/
CaCDR1 and 109, respectively) in the strains evaluated, 
except for A. communis and S. atriplicifolium extracts 
assayed in AD/CaCDR1 and C. glabrata 109, respec-
tively (p < 0.05).

Fig. 1  Effects of Acalypha communis extract on Nile Red accumulation in: (A) Candida albicans 1114; (B) Saccharomyces cerevisiae AD/CaMDR1; 
(C) S. cerevisiae AD/CaCDR1; and (D) C. glabrata 109. The intracellular Nile Red levels increased significantly in the cells treated with different 
concentrations of the extract. Significant differences from the negative control were determined by using paired one-tailed Student’s t test 
(***p < 0.001, **p < 0.01, *p < 0.05)
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It is important to note that the plant extracts did not 
exhibit auto-fluorescence.

Cytotoxic effect on mammalian cells
The toxic effect of the most active extracts on mamma-
lian cells was investigated with MTT and hemolysis assays 
using PBMC and erythrocytes, respectively. The A. com-
munis extract showed a half-maximal inhibitory concentra-
tion (IC50) value of 64.67 ± 0.99 µg/mL against PBMC and 

only showed hemolysis at > 100 µg/mL while the S. atripici-
folium extract exhibited an IC50 value of 119.80 ± 0.95 µg/
mL and no hemolysis at 200 µg/mL.

Discussion
In order to discover novel sources of compounds able 
to counteract the MDR linked to fungal ABC and MFS 
efflux pumps, a panel of 137 extracts from mostly native 
plants from Argentina, was screened.

Fig. 2  Effects of Solanum atriplicifolium extract on Nile Red accumulation in: (A) Candida albicans 1114; (B) Saccharomyces cerevisiae AD/CaMDR1; 
(C) S. cerevisiae AD/CaCDR1; and (D) C. glabrata 109. The intracellular Nile Red levels increased significantly in the cells treated with different 
concentrations of the extract. Significant differences from the negative control were determined by using paired one-tailed Student’s t test 
(***p < 0.001, **p < 0.01, *p < 0.05)
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The results indicated that 15 extracts rendered strains 
C. albicans 1114 and AD/CaMDR1 sensitive to FCZ by 
inhibiting the efflux linked to Mdr1 (Table 1). Among the 
effective extracts, those obtained from A. communis and 
S. atriplicifolium had the greatest ability to chemosensi-
tize strains to FCZ and, together with the P. alopecuroides 
extract, also increased the antifungal effect of the azole 
in the Cdr1-overexpressing cells, AD/CaCDR1 and C. 
glabrata 109 (Table  1). According to these findings, A. 
communis, P. alopecuroides and S. atriplicifolium extracts 
behaved as dual inhibitors. The remaining extracts did 
not reverse the resistance to FCZ in the Cdr1-express-
ing yeasts, demonstrating a selective activity towards 
CaMdr1. These results would explain the lower chemo-
sensitization observed for the clinical isolate C. albicans 
1114 compared to S. cerevisiae AD/CaMDR1 for A. sub-
fusiformis, B. salicifolia, F. campestris, F. oolepis, L. molle-
oides, M. dictyocarpa and S. palinacanthum extracts 
(Table 1), since although the MFS transporter Mdr1 may 
be targeted in, the ABC pump would be still active in C. 
albicans 1114, thus decreasing the intracellular concen-
tration of FCZ and therefore evading partially its antifun-
gal action.

The low MECs (25  µg/mL) that caused a reduction 
in the MICFCZ values of at least fourfold with the clini-
cal isolates of Candida, highlighted A. communis and S. 
atriplicifolium as promising sources of Mdr1 and Cdr1 
inhibitors to augment FCZ activity in the treatment for 
azole resistant candidiasis. None of the 15 active extracts 
increased the antifungal effect of FCZ in the sensitive C. 
albicans, C. glabrata and AD1-8u− strains, supporting 
the specific interference with the efflux function of the 
transporters.

L. cuneifolia is a hemiparasitic plant that grows in 
different hosts [49]. The activity of extracts obtained 
from this species from each of the host trees, L. molle-
oides, Vachellia sp. and Condalia buxifolia was similar 
(Table  1), suggesting that the parasitized plant did not 
influence the pump inhibitory effect.

Betulin, isolated from L. cuneifolia, has been found 
to strongly inhibit the human ABC transporter P-gp 
at micromolar concentrations by blocking the efflux of 
doxorubicin and consequently restoring the sensitivity 
of leukemia cells to its cytotoxic effect [29]. However, 
this triterpene did not reduce FCZ resistance in the tar-
get yeasts, even at the high concentration of 50 µM. This 
result suggests that betulin is a selective inhibitor of P-gp, 
at least with respect to Mdr1 and Cdr1. Although this 
result correlated with the lack of activity of L. cuneifo-
lia extract against Cdr1, it is not in accordance with the 
effect of this plant against Mdr1, suggesting that another 
metabolite with Mdr1 blocking activity is present. 
The inability of betulin to inhibit the transport of FCZ 

mediated by yeast efflux pumps concurs with the obser-
vation that diterpenoid esters isolated from Euphorbia 
spp. were effective at inhibiting P-gp but were not active 
against C. albicans Mdr1 or Cdr1 [50].

Both A. communis and S. atriplicifolium extracts inhib-
ited Nile Red transport at concentrations ≥ 12.5  µg/mL 
(Table 2 and Figs. 1 and 2) with FIR values ranging from 
1.10 to 3.68 (Table  2). These results confirmed that the 
enhanced activity of FCZ was due to an increased intra-
cellular accumulation. In these experiments, the Nile 
Red MFI values were lower for the untreated and treated 
Candida spp. than for the S. cerevisiae strains (Figs. 1 and 
2). At the emission and excitation wavelengths used in 
this study (488 nm and a 574/26 nm, respectively), Nile 
Red labels neutral lipids within intracellular lipid droplets 
[51, 52]. The differences in the MFI values obtained, sug-
gest that S. cerevisiae strains contain more neutral lipids 
than Candida strains.

Although the significantly lower MFI values (p < 0.05) 
for untreated AD/CaCDR1 (4,730) and AD/CaMDR1 
(13,700) in comparison to AD1-8u− (MFI = 52,900), 
showed the effectiveness of the pumps at transporting 
Nile Red, the lower MFI value for AD/CaCDR1 than for 
AD/CaMDR1 (p < 0.05) indicated that Nile Red is more 
efficiently effluxed by CaCdr1 than by CaMdr1. There-
fore, it is encouraging that A. communis, P. alopecuroides 
and S. atripicifolium extracts were able to inhibit this 
proficient ABC-type pump.

The same Nile Red-derived fluorescence in pump-
deficient C. albicans, C. glabrata and AD1-8u− cells 
in the absence or presence of the extracts suggests that 
the increased FCZ susceptibility in MDR cells is likely 
achieved by inhibiting Mdr1 and Cdr1.

As far as we are aware, there have been few studies 
that have screened libraries of plant extracts for MDR 
reversal activity through interference with yeast trans-
porters [32, 50]. In particular, no information was found 
in the literature with respect to this property in A. com-
munis and S. atripicifolium extracts. The cycloartane 
triterpenes 16α-hydroxymollic acid, 15α-hydroxymollic 
acid, and 7β,16β-dihydroxy-1,23-dideoxyjessic acid have 
been isolated from A. communis [53], however there is 
no evidence that any of the compounds are Cdr1 and/or 
Mdr1 inhibitors. As far as we are aware, no compounds 
from S. atriplicifolium extracts have been identified. It is 
important to note that assays were performed with crude 
plant extracts likely to contain a mixture of compounds. 
The next step in this research will be to purify the active 
component(s) from the extracts. These compounds are 
likely to have a higher pump-inhibitory specific activity.

The A. communis and S. atripicifolium extracts were 
devoid of toxic effects on mammalian cells. The IC50 val-
ues obtained towards PBMC were higher than 20 µg/mL, 
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which is the threshold established by the US National 
Cancer Institute (NCI) to consider an extract as cyto-
toxic [26]. In addition, neither extract caused hemolysis 
of human erythrocytes at concentrations of 100 µg/mL.

Conclusion
The increasing incidence of MDR in Candida species 
due to the overexpression of efflux pumps, led us to 
search new sources of compounds with the capacity to 
circumvent this worldwide problem. We found that 15 
extracts, in particular those from A. communis and S. 
atriplicifolium, were able to reverse the resistance to 
FCZ by interfering with the efflux function of the MFS 
transporter Mdr1 and of the ABC pump, Cdr1. In the 
case of A. communis and S. atriplicifolium extracts, 
this property was observed at a concentration ≥ 25 µg/
mL and decreased the resistance to FCZ up to 32-fold. 
Likewise, these extracts inhibited the efflux of Nile Red 
mediated by both Mdr1 and Cdr1. The modulation of 
efflux was not only observed with S. cerevisiae strains 
overexpressing Mdr1 or Cdr1 but also in MDR clinical 
Candida spp. strains, which highlights the therapeutic 
potential of the extract components. The traditional use 
of A. communis is as a purgative and for the treatment 
of skin wounds [27]. Although this study could not 
explain the above mentioned popular uses, it identifies 
a new biological activity of this plant species. No popu-
lar uses have been reported for S. atriplicifolium. The 
promising dual efflux pump inhibitory effect of A. com-
munis and S. atriplicifolium extracts together with their 
low toxicity, highlight these as candidates to obtain 
active principles that can counteract antifungal resist-
ance in Candida infections.
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