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Abstract
Background:  The emergence of antimalarial drug resistance encourages the search for new antimalarial agents. 
Mammea siamensis belongs to the Calophyllaceae family, which is a medicinal plant that is used in traditional Thai 
preparations. The hexane and dichloromethane extracts of this plant were found to have potent antimalarial activity. 
Therefore, this study aimed to isolate active compounds from M. siamensis flowers and evaluate their antimalarial 
potential and their interactions with Plasmodium falciparum lactate dehydrogenase (PfLDH).

Methods:  The compounds from M. siamensis flowers were isolated by chromatographic techniques and evaluated 
for their antimalarial activity against chloroquine (CQ)-resistant P. falciparum (K1) strains using a parasite lactate 
dehydrogenase (pLDH) assay. Interactions between the isolated compounds and the PfLDH enzyme were 
investigated using a molecular docking method.

Results:  The isolation produced the following thirteen compounds: two terpenoids, lupeol (1) and a mixture of 
β-sitosterol and stigmasterol (5); two mammea coumarins, mammea A/AA cyclo D (6) and mammea A/AA cyclo F 
(7); and nine xanthones, 4,5-dihydroxy-3-methoxyxanthone (2), 4-hydroxyxanthone (3), 1,7-dihydroxyxanthone (4), 
1,6-dihydroxyxanthone (8), 1-hydroxy-5,6,7-trimethoxyxanthone (9), 3,4,5-trihydroxyxanthone (10), 5-hydroxy-1-
methoxyxanthone (11), 2-hydroxyxanthone (12), and 1,5-dihydroxy-6-methoxyxanthone (13). Compound 9 exhibited 
the most potent antimalarial activity with an IC50 value of 9.57 µM, followed by 10, 1, 2 and 13 with IC50 values of 
15.48, 18.78, 20.96 and 22.27 µM, respectively. The molecular docking results indicated that 9, which exhibited the 
most potent activity, also had the best binding affinity to the PfLDH enzyme in terms of its low binding energy 
(-7.35 kcal/mol) and formed interactions with ARG109, ASN140, and ARG171.

Conclusion:  These findings revealed that isolated compounds from M. siamensis flowers exhibited antimalarial 
activity. The result suggests that 1-hydroxy-5,6,7-trimethoxyxanthone is a possible lead structure as a potent inhibitor 
of the PfLDH enzyme.
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Background
Malaria remains one of the most important tropical para-
sitic diseases, as it results in 1–3 million deaths annually 
[1]. Five different species of Plasmodium parasites cause 
malaria in humans. Of these, Plasmodium falciparum 
is the most virulent parasite, as it results in a high mor-
tality and morbidity rate caused approximately 229 mil-
lion cases and 409,000 deaths worldwide in 2019 [2, 3]. 
Plasmodium infections can produce a range of clinical 
effects and types of malaria, including asymptomatic 
parasitemia, uncomplicated malaria, severe malaria, 
and death [4]. In the absence of an effective malaria vac-
cine, antimalarial drugs remain the only therapeutic 
method for the prophylaxis and treatment of malaria 
[5]. Artemisinin-based combination therapies (ACTs) 
have been recommended by the World Health Organiza-
tion (WHO) as a first-line treatment for uncomplicated 
malaria in endemic countries worldwide [6]. ACTs con-
sist of fast-acting and stable artemisinin derivatives that 
are coadministered with a different long-acting partner 
drug, which involves a different mechanism of action, to 
reduce the emergence of bacterial resistance and increase 
treatment efficacy [7]. However, P. falciparum has now 
developed mechanisms to resist most antimalarial drugs, 
including current ACTs [8]. The emergence and spread 
of ACT-resistant malaria parasites is causing an increase 
in malaria incidence, epidemics, and the associated mor-
bidity and mortality [7]. As current antimalarial drugs 
become increasingly ineffective, there is an urgent need 
to develop a novel antimalarial agent to treat and control 
the disease. The lactate dehydrogenase enzyme from P. 
falciparum (PfLDH) has been considered an important 
molecule and an essential drug target for malaria treat-
ments. This enzyme catalyzes the interconversion of 
pyruvate to lactate in the final step of glycolysis, which is 
required for energy production in living cells [9]. Inhibi-
tion of this enzyme activity results in parasitic death [10].

In the continued search for new molecular targets for 
drug design, herbal medicine offers an interesting choice 
for the research and development of antimalarial drugs 
because plants are an excellent source of many pharma-
ceutical compounds [11]. Mammea siamensis T. Anders. 
is a Thai medicinal plant that is locally known as Sara-
phi and belongs to the family Calophyllaceae. This plant 
is widely distributed in Thailand, Myanmar, Laos, Cam-
bodia, and Vietnam [12]. Its flowers have long been used 
in folk medicine to treat heart problems and fevers and 
to increase appetite [13]. This plant and its constituents 
have been reported to possess antiproliferative and apop-
totic effects [14], aromatase inhibitory activity [15] and 
the ability to inhibit nitric oxide (NO) production [16]. 
However, there have been no reports of antimalarial 
activity for this plant.

In our study, the hexane and dichloromethane extracts 
of M. siamensis possessed potent antimalarial proper-
ties, with IC50 values of 5.32 and 5.67 µg/ml, respectively. 
Therefore, the compounds from this plant were isolated 
and investigated for antimalarial activity. Moreover, the 
mechanism of the isolated compound with the PfLDH 
enzyme was also evaluated using a molecular docking 
technique.

Materials and methods
Plant materials
The M. siamensis flowers were collected from Surat 
Thani Province, Thailand, in 2020. The collection of plant 
materials was performed in accordance with the relevant 
guidelines and regulations of the Plant Varieties Protec-
tion, Department of Agriculture, Ministry of Agriculture 
and Cooperatives, Thailand. The plant was identified by 
a botanist from the School of Pharmacy at Walailak Uni-
versity. The voucher specimen (SMD 122006002) was 
deposited in the School of Medicine, Walailak University.

General experimental procedure
The nuclear magnetic resonance (NMR) spectra were 
recorded in Acetone-d6 and CDCl3 on an Avance NEO, 
a Bruker Spectrometer operating at 500 MHz for 1 H and 
125  MHz for 13  C. Column chromatography was car-
ried out using silica gel (230–400 mesh, Sili Cycle Inc., 
Canada). All reagents were purchased from Sigma, USA. 
All solvents were analytical reagent grade and purchased 
from Labscan, Thailand.

Extraction and isolation of compounds
The dried M. siamensis flowers (3.5 kg) were ground and 
macerated successively with three solvents of increasing 
polarity. The plant material was initially extracted with 
hexane (2 × 20  L) for one week at room temperature. 
The solvent extraction was filtered through Whatman 
No. 1 filter paper and concentrated under reduced pres-
sure at 50 °C to obtain a yellowish viscous crude hexane 
extract (21.3 g). The residue was further macerated with 
dichloromethane and ethanol under the same conditions 
mentioned above to afford a brownish viscous crude con-
taining dichloromethane (29.7  g) and ethanol (16.2  g) 
extracts.

A bioassay-guided isolation of antimalarial active com-
pounds was performed. Hexane and dichloromethane, 
which exhibited high activities (IC50 = 5.32 and 5.67  µg/
ml, respectively), were selected to further isolate active 
compounds by chromatographic techniques. The hexane 
extract (18.00  g) was separated by quick column chro-
matography (QCC) over silica gel and eluted by step-
gradient elution, which starting with hexane and then 
increased in polarity with EtOAc to afford seven major 
fractions (F1-F7) based on thin-layer chromatography 
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(TLC) profiles. Fraction 2 (3.64 g) was purified by column 
chromatography (CC) using 5% EtOAc in hexane as the 
eluent to produce compound 1 as a white crystal solid 
(470.10 mg) and compound 2 as a yellow oil (170.10 mg). 
Fraction 4 (2.13 g) was purified by CC using 10% EtOAc 
in hexane as an eluent to obtain six subfractions (H1-H6). 
Subfraction H3 (0.57 g) was purified by CC with 10% ace-
tone in hexane to produce compound 3 as a yellow crys-
tal (60.50  mg). Subfraction H6 (2.17  g) was purified by 
CC using 15% EtOAc in hexane to give five subfractions 
(H6A-H6E). Subfraction H6C (0.37 g) was further puri-
fied by CC using 15% acetone in hexane followed by pre-
parative thin layer chromatography (PTLC) to produce 
compound 4 as a yellow oil (24.20 mg).

The dichloromethane extract (25.00 g) was subjected to 
QCC over silica gel by step-gradient elution starting from 
dichloromethane, and then the polarity was increased 
with EtOAc and acetone to produce 10 fractions (F1-F10) 
based on TLC profiles. Fraction 3 (4.17  g) was purified 
by QCC to produce six subfractions (C1-C6). Subtrac-
tion C3 (0.71  g) was further subjected to CC with 10% 
EtOAc in hexane to afford compound 5 as a white pow-
der (45.30  mg) and compound 6 as a yellow powder 
(22.40 mg). Fraction 5 (2.87 g) was purified by CC to pro-
duce seven subfractions (5 A-5G). Subtraction 5B (0.48 g) 
was purified by CC with 15% EtOAc in hexane to pro-
duce compound 7 as a yellow powder (5.80 mg). Subtrac-
tion 5D was separated by CC with 15% EtOAc in hexane 
to afford compound 8 as a yellow powder (5.70 mg) and 
compound 9 as a yellow powder (5.30 mg).

Subfraction 5  F (0.32  g) was subjected to CC eluting 
with 20% EtOAc in hexane to afford three subtractions 
(5F1-5F3). Subtraction 5F3 (0.08 g) was further purified 
by CC eluting with 20% EtOAc/hexane to obtain com-
pound 10 as a yellow powder (41.50 mg) and compound 
11 as a yellow powder (22.50 mg). Fraction 8 (0.22 g) was 
purified by CC to give eight subfractions (8 A-8 H). Sub-
traction 8 C was purified by CC with 25% EtOAc in hex-
ane to afford compound 12 as a yellow powder (57.40 mg) 
and compound 13 as a yellow powder (25.30 mg).

The structures of compounds 1–13 were elucidated by 
NMR analysis, and were confirmed by comparison with 
previously reported data in the literature.

Parasite cultivation
The chloroquine-resistant P. falciparum (K1) strain was 
obtained from Dr. Rapatbhorn Patrapuvich, Department 
of Drug Research Unit for Malaria, Faculty of Tropical 
Medicine, Mahidol University, Thailand. P. falciparum 
was cultured according to the method of Trager and 
Jensen with some modifications [17]. The parasites were 
cultured in noninfected human red blood cells (2% hema-
tocrit) using RPMI 1640 medium that was supplemented 
with 0.5% Albumax II, 10 µg/ml hypoxanthine, 2.5 µg/ml 

gentamicin, 4.8  mg/ml HEPES and buffered with 2  mg/
ml sodium bicarbonate as described previously in our 
previous study [18]. All the chemicals and reagents used 
for culturing were purchased from Sigma–Aldrich, New 
Delhi, India and Gibco, Waltham, MA USA. The culture 
was maintained at 37 °C in a CO2 incubator. The culture 
medium was changed, and Giemsa-stained slides were 
prepared daily to monitor parasitemia.

Antimalarial activity assay
The in vitro antimalarial activity of the isolated com-
pounds was assessed on cultured P. falciparum using 
the Plasmodium lactate dehydrogenase (pLDH) assay 
described by Makler with some modifications [19]. 
Briefly, the compounds were individually dissolved in 
DMSO to obtain a stock solution of 1 mM, and the solu-
tion was then diluted to a final working concentration 
of 0.78–100 µM. Chloroquine and artesunate (Sigma–
Aldrich, New Delhi, India) were used as positive controls. 
Parasitized red blood cells (2% hematocrit, 2% parasit-
emia) were aliquoted into a 96-well cell culture plate, and 
then the infected red cells were exposed. The tested com-
pound was added to 96-well plates and incubated at 37 °C 
for 72 h in a CO2 incubator. At the end of incubation, the 
plates were subjected to three freeze/thaw cycles (frozen 
at -20  °C and thawed at 37  °C) for complete hemolysis. 
The lysed cells were transferred to a new 96-well plate 
that contained a mixture of 100  µl of Malstat reagent 
and 20 µl of nitroblue tetrazolium/phenazine ethosulfate 
solution (Calbiochem®, Sigma–Aldrich, New Delhi, India) 
and were incubated for 1 h in the dark. The experiments 
were performed in triplicate. These solutions were used 
to determine the activity of the lactate dehydrogenase 
(LDH) enzyme in the cultures. When LDH was present, 
a purple product was formed, and the optical density was 
measured using a microplate reader at a wavelength of 
650  nm. The concentrations at which 50% inhibition of 
parasite growth (IC50) was calculated using a nonlinear 
regression curve contained in GraphPad PRISM version 
6 (GraphPad Software, Inc., La Jolla, CA, USA).

In vitro assessment of cytotoxicity
The toxicity of isolated compounds was assessed by a 
3-(4,5-dimethythiazol2-yl)-2,5-diphenyl tetrazolium 
bromide (MTT) assay according to a previous method 
[20]. Briefly, Vero cells, a normal mammalian cell line 
or HepG2 human hepatoma cell line, were seeded into 
96-well plates (104 cell/ml) and incubated for 24  h at 
37 °C with 5% CO2. Cells were then treated with various 
concentrations of the tested compounds ranging from 5 
to 80 µM, and the final concentration of DMSO in the 
tested dilutions was not higher than 1% for 48 h at 37 °C 
with 5% CO2. Subsequently, MTT solution was added to 
each well, and the plate was incubated for 2 h in a CO2 
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incubator. The medium was then removed, and 100 µl of 
DMSO was added to each well. The negative control was 
performed using growth medium alone instead of the 
tested compounds, while doxorubicin (Sigma–Aldrich, 
New Delhi, India) was used as the positive toxic control. 
The assay was performed in triplicates. Finally, the opti-
cal density was determined using a microplate reader at a 
wavelength of 590 nm. The 50% cytotoxic concentration 
(CC50) was calculated using a nonlinear regression curve 
contained in GraphPad PRISM version 6 (GraphPad 
Software, Inc., La Jolla, CA, USA).

Molecular docking
PfLDL structure preparation.

The crystal structure of PfLDH in complex with 
β-nicotinamide adenine dinucleotide phosphate diso-
dium salt (NADH) and oxamate was downloaded from 
the Protein Data Bank with PDB code 1LDG. The PfLDH 
structure was prepared using AutoDock Tools. The miss-
ing residues were incorporated. All water molecules and 
the oxamate were removed so that a new ligand could 
enter the active site [21].

Ligand molecule preparation
Fourteen compounds from M. siamensis were used as 
ligands for the docking study. The 3D structures of com-
pounds, including artesunate and chloroquine, were gen-
erated using the HyperChem Professional 8.0 program. 
(Hypercube Inc., Gainesville, FL). Each structure was 
geometrically optimized using the semiempirical PM3 
method. Subsequently, Gasteiger charges were assigned 
to the ligands using AutoDock Tools to model the appro-
priate structures for docking calculations.

Molecular docking analysis
The binding mode and interaction of compounds from 
M. siamensis and PfLDH were determined by molecular 
docking using the AutoDock 4.2 program (Hypercube 
Inc., Gainesville, FL) according to a previous method 
[22]. The PfLDH active site was selected as the ligand 
binding site. A grid box was constructed of 60 × 60 × 60 
Å3 with a grid spacing of 0.375 Å and centered on 32, 
30 and 32 Å for x, y, and z, respectively. All calculations 
were performed using the Lamarckian genetic algorithm 
(LGA) method with protein-fixed and ligand-flexible 
molecules. The resulting docked poses with root mean-
square deviations (RMSDs) less than 2.0 Å were clustered 
together. The lowest energy-minimized conformation of 
the most populated cluster was used for further analysis 
of the hydrogen bond interactions [22]. The 3D hydrogen 
bond interactions between compounds and the bind-
ing site of an enzyme were generated by the UCSF Chi-
mera 1.14 program, and hydrophobic interactions were 

evaluated using the protein ligand interaction profiler 
(PLIP) [23].

Results
Identification of compounds
From the bioassay-guided isolation of the M. siamensis 
flower extracts, hexane and dichloromethane extracts 
exhibited potent antimalarial activity with IC50 values of 
5.32 and 5.67  µg/ml, respectively. Therefore, these two 
extracts were selected for the isolation of active com-
pounds. The extracts were fractionated and isolated by 
chromatographic techniques, and thirteen known com-
pounds were obtained (Fig.  1). Four compounds (1–4) 
were isolated from the hexane extract, and nine com-
pounds (5–13) were obtained from the dichlorometh-
ane extract. These included two terpenoids, lupeol (1) 
[24] and a mixture of β-sitosterol and stigmasterol (5) 
[25]; two mammea coumarins, mammea A/AA cyclo D 
(6) [26] and mammea A/AA cyclo F (7) [26]; and nine 
xanthones; 4,5-dihydroxy-3-methoxyxanthone (2) [27], 
4-hydroxyxanthone (3) [28], 1,7-dihydroxyxanthone (4) 
[29], 1,6-dihydroxyxanthone (8) [30], 1-hydroxy-5,6,7-tri-
methoxyxanthone (9) [27], 3,4,5-trihydroxyxanthone (10) 
[31], 5-hydroxy-1-methoxyxanthone (11), 2-hydroxyxan-
thone (12) [32], and 1,5-dihydroxy-6-methoxyxanthone 
(13) [33].

Identifications of compounds 1–13
Lupeol (1): white crystal solid. 1  H NMR (CDCl3, 
500  MHz): δ 4.59 (1  H, s, H-29a), 4.70 (1  H, s, H-29b), 
3.23 (1 H, dd, J = 2.0, 5.8 Hz, H-3), 1.00 (3 H, s, H-23), 0.98 
(3 H, s, H-24), 0.88 (3 H, s, H-25), 0.86 (3 H, s, H-26), 0.84 

Fig. 1  Structures of the compounds isolated from M. siamensis flowers
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(3 H, s, H-27), 0.79 (3 H, s, H-28), 1.72 (3 H, s, H-30). 13 C 
NMR (CDCl3, 125 MHz): δ 14.6 (C-27), 16.1 (C-24), 16.1 
(C-26), 16.2 (C-25), 18.1 (C-28), 18.4 (C-6), 19.4 (C-30), 
21.1 (C-11), 27.7 (C-2), 25.3 (C-12), 27.6 (C-15), 28.1 
(C-23), 29.9 (C-21), 34.5 (C-7), 35.7 (C-16), 37.4 (C-10), 
38.1 (C-1), 38.9 (C-13), 39.0 (C-4), 40.1 (C-22), 41.0 (C-8), 
42.9 (C-14), 43.1 (C-17), 47.9 (C-19), 48.4 (C-18), 50.6 
(C-9), 55.4 (C-5), 79.2 (C-3), 109.4 (C-29), 151.0 (C-20).

4,5-Dihydroxy-3-methoxyxanthone (2): yellow oil. 
1 H-NMR (acetone-d6, 500 MHz): δ 7.21 (1 H, t, J = 8.0 Hz, 
H-7), 7.30 (1  H, dd, J = 8.0, 1.8  Hz, H-6), 7.31 (1  H, d, 
J = 9.0 Hz, H-2), 7.41 (1 H, d, J = 9.0 Hz, H-1), 7.68 (1 H, 
dd, J = 8.0, 1.8 Hz, H-8), 3.93 (3 H, s, 3-OCH3). 13 C-NMR 
(acetone-d6, 125  MHz): δ 61.2 (3-OCH3), 113.5 (C-2), 
116.1 (C-8), 116.1 (C-9a), 119.3 (C-6), 122.8 (C-8a), 123.1 
(C-1), 123.3 (C-7), 144.7 (C-10a), 145.1 (C-3), 146.0 (C-5), 
146.6 (C-4), 150.3 (C-4a), 175.4 (C-9).

4-Hydroxyxanthone (3): yellow crystal. 1  H-NMR 
(acetone-d6, 500  MHz): δ 7.26 (1  H, t, J = 8.0  Hz, H-2), 
7.36 (1  H, dd, J = 8.0, 1.8  Hz, H-3), 7.45 (1  H, td, J = 7.6, 
1.5 Hz, H-7), 7.62 (1 H, dd, J = 7.6, 1.5 Hz, H-5), 7.71 (1 H, 
dd, J = 8.0, 1.8 Hz, H-1), 7.84 (1 H, td, J = 7.6, 1.5 Hz, H-6), 
8.24 (1 H, dd, J = 7.6, 1.5 Hz, H-8). 13 C-NMR (acetone-d6, 
125 MHz): δ 115.9 (C-1), 118.1 (C-5), 120.1 (C-3), 121.5 
(C-8a), 122.6 (C-9a), 123.8 (C-2), 124.0 (C-7), 126.1 (C-8), 
134.9 (C-6), 145.4 (C-4a), 146.6 (C-4), 155.8 (C-10a), 
176.2 (C-9).

1,7-Dihydroxyxanthone (4): yellow oil. 1  H-NMR 
(acetone-d6, 500  MHz): δ 6.77 (1  H, d, J = 8.3  Hz, H-2), 
6.90 (1 H, d, J = 8.3 Hz, H-4), 7.34 (1 H, dd, J = 8.0, 2.6 Hz, 
H-6), 7.39 (1 H, d, J = 8.0 Hz, H-5), 7.54 (1 H, t, J = 8.3 Hz, 
H-3), 7.60 (1 H, d, J = 2.6 Hz, H-8), 12.66 (1 H, s, 1-OH). 
13  C-NMR (acetone-d6, 125  MHz): δ 105.3 (C-8), 106.6 
(C-4), 108.7 (C-9a), 110.0 (C-2), 119.0 (C-5), 120.8 (C-8a), 
125.3 (C-6), 136.2 (C-3), 151.0 (C-10a), 156.0 (C-4a), 
156.1 (C-7), 161.8 (C-1), 181.7 (C-9).

Mixture of β-sitosterol and stigmasterol (2:1) (5): 
white powder.

β-sitosterol; 1  H NMR (CDCl3, 500  MHz): δ 5.35 
(1 H, t, J = 6.5 Hz, H-5), 3.52 (1 H, tdd, J = 4.3, 4.0, 3.6 Hz, 
H-3), 1.00 (3 H, s, H-29), 0.92 (3 H, d, J = 6.3 Hz, H-19), 
0.83 (3  H, t, J = 7.2  Hz, H-24), 0.82 (3  H, d, J = 6.3  Hz, 
H-26), 0.80 (3 H, d, J = 6.3 Hz, H-27), 0.67 (3 H, s, H-28). 
13 C-NMR (CDCl3, 125 MHz): δ 12.0 (C-24), 12.4 (C-29), 
19.1 (C-28), 19.4 (C-19), 19.7 (C-27), 20.3 (C-26), 21.5 
(C-11), 23.5 (C-23), 26.5 (C-15), 26.5 (C-21), 28.6 (C-16), 
29.6 (C-25), 32.1 (C-2), 32.2 (C-8), 32.3 (C-7), 34.3 (C-20), 
36.5 (C-10), 36.8 (C-18), 37.4 (C-1), 40.1 (C-12), 42.6 
(C-4), 42.8 (C-13), 46.4 (C-22), 50.4 (C-9), 56.5 (C-17), 
57.1 (C-14), 72.1 (C-3), 121.9 (C-6), 141.1 (C-5).

Stigmasterol ; 1  H NMR (CDCl3, 500  MHz): δ 5.31 
(1 H, t, J = 6.5 Hz, H-5), 3.51 (1 H, tdd, J = 4.3, 4.0, 3.6 Hz, 
H-3), 5.14 (1  H, m, H-21), 4.97(1  H, m, H-20), 1.02 
(3 H, s, H-29), 0.91 (3 H, d, J = 6.3 Hz, H-19), 0.82 (3 H, 

t, J = 7.0  Hz, H-24), 0.81 (3  H, d, J = 6.5  Hz, H-26), 0.80 
(3 H, d, J = 6.5 Hz, H-27), 0.70 (3 H, s, H-28). 13 C-NMR 
(CDCl3, 125  MHz): δ 12.2 (C-24), 12.4 (C-29), 19.0 
(C-28), 19.8 (C-27), 20.4 (C-26), 21.7 (C-11), 21.9 (C-19), 
24.6 (C-15), 25.5 (C-23), 29.4 (C-16), 29.7 (C-25), 31.9 
(C-8), 32.1 (C-2), 32.3 (C-7), 36.7 (C-10), 37.6 (C-1), 40.0 
(C-12), 40.7 (C-18), 42.3 (C-13), 42.6 (C-4), 50.2 (C-9), 
56.4 (C-17), 56.9 (C-14), 72.3 (C-3), 121.7 (C-6), 129.8 
(C-21), 138.9 (C-20), 141.3 (C-5).

Mammea A/AA cyclo D (6): yellow powder. 1 H-NMR 
(CDCl3, 500 MHz): δ 0.96 (1 H, d, J = 6.6 Hz, H-9ʹ), 0.96 
(1 H, d, J = 6.6 Hz, H-10ʹ), 1.57 (1 H, s, H-4ʹ), 1.57 (1 H, s, 
H-5ʹ), 2.20 (1 H, m, H-8ʹ), 2.94 (1 H, d, J = 6.7 Hz, H-7ʹ), 
5.61 (1  H, d, J = 10.0  Hz, H-2ʹ), 5.96 (1  H, s, H-3), 6.87 
(1 H, d, J = 10.0 Hz, H-1ʹ), 7.27 (1 H, m, H-3ʹʹ), 7.30 (1 H, 
m, H-4ʹʹ), 7.30 (1 H, m, H-5ʹʹ), 7.38 (1 H, m, H-2ʹʹ), 7.41 
(1 H, m, H-6ʹʹ), 14.77 (1 H, s, 5-OH). 13 C-NMR (CDCl3, 
125  MHz): δ 22.4 (C-9ʹ), 22.4 (C-10ʹ), 24.9 (C-8ʹ), 28.1 
(C-4ʹ), 28.1 (C-5ʹ), 53.3 (C-7ʹ), 79.6 (C-3ʹ), 101.3 (C-8), 
102.0 (C-4a), 107.0 (C-6), 112.5 (C-3), 115.3 (C-1ʹ), 126.1 
(C-2ʹ), 126.9 (C-4ʹʹ), 127.4 (C-2ʹʹ), 127.4 (C-6ʹʹ), 128.0 
(C-5ʹʹ), 128.1 (C-3ʹʹ), 139.1 (C-1ʹʹ), 154.6 (C-8a), 156.1 
(C-4), 157.9(C-7), 159.4 (C-2), 164.2 (C-5), 206.5 (C-6ʹ).

Mammea A/AA cyclo F (7): yellow powder. 1 H-NMR 
(CDCl3, 500  MHz): δ 0.97 (1  H, s, H-9ʹ), 0.97 (1  H, s, 
H-10ʹ), 1.31 (1 H, s, H-5ʹ), 1.43 (1 H, s, H-4ʹ), 2.23 (1 H, 
m, H-8ʹ), 2.97 (2 H, dd, J = 15.3, 9.0 Hz, H-7ʹ), 3.32 (1 H, 
d, J = 9.0  Hz, H-1ʹ), 4.90 (1  H, t, J = 9.0  Hz, H-2ʹ), 5.94 
(1  H, s, H-3), 7.32 (1  H, m, H-3ʹʹ), 7.32 (1  H, m, H-4ʹʹ), 
7.32 (1  H, m, H-5ʹʹ), 7.42 (1  H, m, H-2ʹʹ), 7.42 (1  H, m, 
H-6ʹʹ). 13 C-NMR (CDCl3, 125 MHz): δ 22.6 (C-9ʹ), 22.6 
(C-10ʹ), 24.8 (C-5ʹ), 25.0 (C-8ʹ), 26.1 (C-4ʹ), 26.7 (C-1ʹ), 
51.8 (C-7ʹ), 71.5 (C-3ʹ), 92.7 (C-2ʹ), 102.4 (C-4a), 103.2 
(C-6), 104.9 (C-8), 112.0 (C-3), 127.0 (C-6ʹʹ), 127.1 (C-2ʹʹ), 
127.4 (C-5ʹʹ), 127.5 (C-3ʹʹ), 128.1 (C-4ʹʹ), 138.9 (C-1ʹʹ), 
155.5 (C-8a), 156.4 (C-4), 159.5 (C-2), 164.0 (C-5), 164.3 
(C-7), 204.9 (C-6ʹ).

1,6-Dihydroxyxanthone (8): yellow powder. 1 H-NMR 
(acetone-d6, 500  MHz): δ 6.77 (1  H, d, J = 8.0  Hz, H-2), 
7.00 (1 H, d, J = 8.0 Hz, H-4), 7.43 (1 H, dd, J = 9.0, 3.0 Hz, 
H-7), 7.52 (1 H, d, J = 9.0 Hz, H-8), 7.61 (1 H, d, J = 3.0 Hz, 
H-5), 7.70 (1 H, t, J = 8.0 Hz, H-3). 13 C-NMR (acetone-d6, 
125 MHz): δ 106.7 (C-4), 108.3 (C-5), 109.2 (C-9a), 109.3 
(C-2), 119.2 (C-8), 120.8 (C-8a), 124.3 (C-7), 136.8 (C-3), 
150.1 (C-6), 154.1 (C-10a), 156.4 (C-4a), 162.3 (C-1), 
181.9 (C-9).

1-Hydroxy-5,6,7-trimethoxyxanthone (9): yellow 
powder. 1 H-NMR (acetone-d6, 500 MHz): δ 6.95 (1 H, d, 
J = 8.2 Hz, H-2), 7.13 (1 H, d, J = 8.2 Hz, H-4), 7.20 (1 H, s, 
H-8), 7.68 (1 H, t, J = 8.2 Hz, H-3), 12.70 (1 H, brs, 1-OH), 
3.96 (3 H, s, 5-OCH3), 3.93 (3 H, s, 6-OCH3), 3.95 (3 H, 
s, 7-OCH3). 13  C-NMR (acetone-d6, 125  MHz): δ 54.3 
(5-OCH3), 55.4 (7-OCH3), 60.1 (6-OCH3), 96.3 (C-8), 
105.5 (C-4), 109.5 (C-2), 111.6 (C-9a), 118.4 (C-8a), 134.3 
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(C-3), 139.0 (C-5), 140.1 (C-10a), 141.3 (C-6), 150.0 (C-7), 
157.8 (C-4a), 160.6 (C-1), 174.1 (C-9).

3,4,5-Trihydroxyxanthone (10): yellow pow-
der. 1  H-NMR (acetone-d6, 500  MHz): δ 7.22 (1  H, t, 
J = 8.1 Hz, H-7), 7.29 (1 H, dd, J = 8.1, 1.8 Hz, H-6), 7.30 
(1 H, d, J = 9.0 Hz, H-2), 7.42 (1 H, d, J = 9.0 Hz, H-1), 7.69 
(1  H, dd, J = 8.1, 1.8  Hz, H-8). 13  C-NMR (acetone-d6, 
125  MHz): δ 113.7 (C-2), 116.0 (C-8), 116.2 (C-9a), 
119.3 (C-6), 122.9 (C-8a), 123.0 (C-1), 123.3 (C-7), 144.7 
(C-10a), 145.2 (C-3), 146.0 (C-5), 146.6 (C-4), 150.2 
(C-4a), 175.4 (C-9).

5-Hydroxy-1-methoxyxanthone (11): yellow pow-
der. 1  H-NMR (acetone-d6, 500  MHz): δ 6.94 (1  H, d, 

J = 8.3 Hz, H-2), 7.12 (1 H, d, J = 8.3 Hz, H-4), 7.19 (1 H, 
t, J = 7.9 Hz, H-7), 7.26 (1 H, dd, J = 7.9, 1.6 Hz, H-6), 7.62 
(1 H, dd, J = 7.9, 1.6 Hz, H-8), 7.70 (1 H, t, J = 8.3 Hz, H-3), 
3.94 (3 H, s, 1-OCH3), 9.24 (1 H, brs, 5-OH). 13 C-NMR 
(acetone-d6, 125  MHz): δ 55.5 (1-OCH3), 105.8 (C-4), 
109.5 (C-2), 112.0 (C-9a), 115.8 (C-8), 119.1 (C-6), 123.3 
(C-7), 123.9 (C-8a), 135.1 (C-3), 144.1 (C-10a), 145.7 
(C-5), 157.5 (C-4a), 160.6 (C-1), 174.7 (C-9).

2-Hydroxyxanthone (12): yellow powder. 1  H-NMR 
(acetone-d6, 500  MHz): δ 7.36 (1  H, dd, J = 8.7, 2.8  Hz, 
H-3), 7.43 (1  H, td, J = 7.6, 1.3  Hz, H-7), 7.51 (1  H, d, 
J = 8.7 Hz, H-4), 7.54 (1 H, dd, J = 7.6, 1.3 Hz, H-5), 7.61 
(1 H, d, J = 2.8 Hz, H-1), 7.81 (1 H, td, J = 7.6, 1.3 Hz, H-6), 
8.23 (1  H, dd, J = 7.6, 1.3  Hz, H-8), 8.90 (1  H, s, 2-OH). 
13  C-NMR (acetone-d6, 125  MHz): δ 114.2 (C-1), 123.2 
(C-5), 124.5 (C-4), 126.2 (C-8a), 127.5 (C-9a), 128.8 (C-7), 
129.3 (C-3), 131.3 (C-8), 139.9 (C-6), 155.2 (C-4a), 159.1 
(C-2), 161.3 (C-10a), 181.1 (C-9).

1,5-Dihydroxy-6-methoxyxanthone (13): yellow pow-
der, 1  H-NMR (acetone-d6, 500  MHz): δ 6.53 (1  H, d, 
J = 8.3 Hz, H-2), 6.79 (1 H, d, J = 8.8 Hz, H-7), 6.81 (1 H, 
d, J = 8.3  Hz, H-4), 7.45 (1  H, t, J = 8.3  Hz, H-3), 7.61 
(1 H, d, J = 8.8 Hz, H-8), 12.62 (1 H, s, 1-OH), 3.79 (3 H, 
s, 6-OCH3). 13  C-NMR (acetone-d6, 125  MHz): δ 60.8 
(6-OCH3), 106.6 (C-4), 107.8 (C-9a), 110.1 (C-2), 113.7 
(C-7), 114.2 (C-8a), 121.1 (C-8), 134.5 (C-5), 136.3 (C-3), 
150.9 (C-10a), 155.9 (C-4a), 156.7 (C-6), 161.8 (C-1), 
181.1(C-9).

Antimalarial activity against P. falciparum
The antimalarial activity of isolated compounds 1–13 
was determined against the P. falciparum K1 strain by 
the pLDH assay and was compared with chloroquine 
and artesunate, a positive control (Table  1). Among 
these compounds, 1-hydroxy-5,6,7-trimethoxyxan-
thone (9) exhibited the highest effect with good activity 
(IC50 = 9.57 µM), followed by 3,4,5-trihydroxyxanthone 
(10, IC50 = 15.48 µM) and lupeol (1, IC50 = 18.78 µM), 
while 4,5-dihydroxy-3-methoxyxanthone (2), 1,5-dihy-
droxy-6-methoxyxanthone (13), and 5-hydroxy-1-me-
thoxyxanthone (11) also exhibited antimalarial effects 
with moderate activity with IC50 values of 20.96, 22.27 
and 29.32 µM, respectively (Table 1); however, the other 
compounds appeared to have weak activity, with IC50 val-
ues ranging from 41.67 to 74.97 µM.

In vitro cytotoxicity
Ideally, in order for a drug to be considered good, it 
should not exhibit any undesirable side effects on nor-
mal cells [34]. The cytotoxicity of isolated compounds 
on Vero cell lines and HepG2 cells was evaluated by the 
MTT assay. The results indicated that most compounds 
exhibited nontoxic effects against Vero cells at a concen-
tration of 80 µM except for compounds 3 and 4, which 

Table 1  Antimalarial activity against P. falciparum and the 
cytotoxicity of compounds from M. siamensis
Compound IC50 (µM) CC50 (µM)

K1 Vero cell HepG2
Lupeol (1) 18.78 ± 3.45a,b > 80 29.27 ± 1.47a,b

4,5-Dihydroxy-
3-methoxylxan-
thone (2)

20.96 ± 3.56a,b > 80 > 80

4-Hydroxyxan-
thone (3)

68.55 ± 2.54a,b 48.13 ± 1.68 a,b 46.12 ± 1.66 
a,b

1,7-Dihydroxyx-
anthone (4)

41.67 ± 2.23a,b 7.90 ± 0.90 13.27 ± 1.12 
a,b

Mixture of 
β-sitosterol and 
stigmasterol (5)

45.00 ± 3.51a,b > 80 > 80

Mammea A/AA 
cyclo D (6)

45.62 ± 3.12a,b > 80 > 80

Mammea A/AA 
cyclo F (7)

49.89 ± 0.42a,b > 80 > 80

1,6-Dihydroxyx-
anthone (8)

47.94 ± 5.16a,b > 80 > 80

1-Hydroxy-5,6,7-
trimethoxyxan-
thone (9)

9.57 ± 1.59 a,b > 80 > 80

3,4,5-Trihy-
droxyxanthone 
(10)

15.48 ± 2.63a,b > 80 > 80

5-Hydroxy-1-me-
thoxyxanthone 
(11)

29.32 ± 4.44a,b > 80 > 80

2-Hydroxyxan-
thone (12)

74.97 ± 0.88 a,b > 80 > 80

1,5-Dihydroxy-
6-methoxyxan-
thone (13)

22.27 ± 1.67a,b > 80 30.54 ± 1.49 
a,b

Chloroquine* 103.2 ± 4.50 ND ND

Artesunate* 0.53 ± 0.04 ND ND

Doxorubicin ND 1.46 ± 0.16 1.11 ± 0.05
ND = not determined
aStatistically significant difference between chloroquine and the compound, 
p < 0.05 (mean ± S.D. of three determinations)
bStatistically significant difference between artesunate and the compound, 
p < 0.05 (mean ± S.D. of three determinations)

*Concentration of positive control with IC50 unit expressed in nM
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achieved CC50 values of 48.13 and 7.90 µM, respectively. 
Compounds 1, 3, 4 and 13 exhibited a cytotoxic effect 
against human HepG2 hepatoma cells with CC50 values 
of 29.27, 46.12, 13.27 and 30.54 µM, respectively.

Molecular docking
The binding energy and amino acid residues of PfLDH 
that interacted with each compound, hydrogen bonds, 
and hydrophobic interactions are given in Table 2. To pre-
dict the binding modes of active compounds with PfLDH 
and identify the interacting amino acid residues, the 2D 
interactions of two of the most active compounds (9 and 
10) with PfLDH were created, as shown in Fig. 2. Among 
thirteen compounds, 1-hydroxy-5,6,7-trimethoxyxan-
thone (9), which possessed the most potent antimalarial 
property against P. falciparum (IC50 = 9.57 µM), exhib-
ited the best binding affinity to PfLDH in terms of its low 
binding energy of -7.35 kcal/mol, which was the highest 
observed affinity to an enzyme; however, its affinity was 
lower than that of artesunate, which had a binding energy 
of -8.57  kcal/mol. Four hydrogen bonds between the 
amino group of ARG109, ASN140, and ARG171 inter-
acted with compound 9. An oxygen atom of the methoxy 

group at C5, C6, and C7 were responsible for these polar 
interactions (Fig.  2a). Additionally, this compound was 
stabilized through hydrophobic interactions with resi-
dues VAL26, PHE52, ILE54, ALA98, ILE119 and ILE123 
(Table 2). 3,4,5-Trihydroxyxanthone (10), which also pos-
sessed good activity (IC50 = 15.48 µM), showed a remark-
able binding affinity to PfLDH with a binding energy 
of -7.25  kcal/mol. It strongly interacted with PHE100, 
ASN140 and SER245. All three hydroxyl groups in this 
compound interacted with those residues, and double 
hydrogen bonds were observed for PHE100 and ASN140 
(Fig. 2b). Additionally, the compound forms hydrophobic 
interactions with residues VAL138, LEU167, PRO246 and 
PRO250. However, these two active compounds (9 and 
10) interacted with amino acids lower than artesunate, 
which formed six hydrogen bonds, and interacted with 
GLY29, ILE31, GLY32, ILE54, THR97, and GLY99 of the 
PfLDH active site (Fig. 2c). Chloroquine formed only one 
hydrogen bond with GLY99 and had a binding energy of 
-6.26 kcal/mol. (Fig. 2d)

Lupeol (1), a terpenoid compound, showed a remark-
able binding affinity to PfLDH with a binding energy 
of -7.21  kcal/mol. It does not interact with any enzyme 

Table 2  The binding energy and interacting amino acid residues of the PfLDH with compounds from M. siamensis
Compound Binding 

energy
(kcal/mol)

H-bond interaction Hydrophobic interaction
Number of
interaction

Amino acid residues Number of
interaction

Amino acid residues

Lupeol (1) -7.21 - 6 ILE54**, VAL55**, PHE100, ILE119

4,5-Dihydroxy-3-methoxylxan-
thone (2)

-7.14 4 PHE100, ASN140*, 
SER245

6 VAL138, LEU167, ALA236, PRO246*, 
PRO250

4-Hydroxyxanthone (3) -6.31 1 TYR85 6 VAL26, PHE52, ILE54, ALA98, ILE119*

1,7-Dihydroxyxanthone (4) -7.17 3 PHE100, ASN140, 
SER245

4 ILE31, VAL138, THR139, PRO250

β-sitosterol (5) -6.45 1 PRO246 6 THR101*, LEU167, PRO246, PRO250*

Stigmasterol (5) -6.64 2 ARG109, ARG171 10 MET30, ILE31*, ILE54*, ALA98, 
THR101, ILE119**

Mammea A/AA cyclo D (6) -7.02 1 GLY29 7 PHE52, ILE54*, VAL55, ALA98, ILE119*

Mammea A/AA cyclo F (7) -7.16 2 THR97, ASN140 8 MET30, ILE31*, THR101, THR139, 
ASN140, LEU167, PRO250

1,6-Dihydroxyxanthone (8) -7.09 4 ASP53, ILE54, TYR85, 
GLU122

8 VAL26, PHE52*, ASP53, ILE54, ALA98, 
ILE119*

1-Hydroxy-5,6,7-trimethoxyx-
anthone (9)

-7.35 4 ARG109, ASN140*, 
ARG171

6 VAL26, PHE52, ILE54, ALA98, ILE119, 
ILE123

3,4,5-Trihydroxyxanthone (10) -7.25 5 PHE100*, ASN140*, 
SER245

4 VAL138, LEU167, PRO246, PRO250

5-Hydroxy-1-methoxyxan-
thone (11)

-7.01 2 ILE54, TYR85 8 VAL26, PHE52, ILE54*, ALA98, 
ILE119*, ILE123

2-Hydroxyxanthone (12) -6.14 2 PHE100, ASN140 4 ILE31, VAL138, THR139, PRO250

1,5-Dihydroxy-6-methoxyxan-
thone (13)

-7.14 3 ILE54, TYR85, ILE199 10 VAL26, PHE52*, ASP53, ILE54*, 
ALA98, ILE119*, ILE123

Artesunate -8.57 7 GLY29, ILE31, GLY32, 
ILE54*, THR97, GLY99

9 VAL26, ILE31, ILE54, ALA98*, THR101, 
ILE119*

Chloroquine -6.26 1 GLY99 6 VAL26, ILE31*, PHE52, THR101, ILE119
*Two interactions with amino acid residues

**Three interactions with amino acid residues
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residue but forms hydrophobic interactions with resi-
dues ILE54, VAL55, PHE100, and ILE119. 4,5-Dihydroxy-
3-methoxyxanthone (2), a moderately active compound, 
interacted with PHE100, ASN140 and SER245. A dou-
ble hydrogen bond between ASN140 and the oxygen at 
O10 and the methoxy group at C3 was observed for this 
compound. This compound also forms hydrophobic 
interactions with VAL138, LEU167, ALA236, PRO246 
and PRO250. 1,5-Dihydroxy-6-methoxyxanthone (13) 
had a lower binding energy (-7.14 kcal/mol) and formed 
three hydrogen bonds with ILE54, TYR85 and ILE199. It 
formed additional hydrophobic interactions with VAL26, 
PHE52, ASP53, ILE54, ALA98, ILE119, and ILE123. 
5-Hydroxy-1-methoxyxanthone (11) showed a binding 
affinity to PfLDH with a binding energy of -7.01 kcal/mol 
and formed two hydrogen bonds with ILE54 and TYR85. 
It also forms hydrophobic interactions with residues 
VAL26, PHE52, ILE54, ALA98, ILE119 and ILE123.

Discussion
Isolating M. siamensis flowers led to thirteen compounds, 
including two terpenoids, two mammea coumarins, and 
nine xanthones. Xanthones (dibenzo-gamma-pirone), 
which were the most commonly found compounds in this 

study, are naturally secondary metabolite compounds 
that can be found in diverse terrestrial and marine plants, 
fungi, and lichen [35]. Xanthones belong to the class of 
oxygenated heterocycles, and their biological and phar-
macological activities are well known in phytomedicine 
and medicinal chemistry [36]. Xanthone derivatives have 
been reported to possess a wide range of biological prop-
erties, including antioxidant, anti-inflammatory, antican-
cer, antidiabetic, antihypertensive, anticonvulsant, and 
antimalarial activities [37]. The biological activities of 
xanthones are associated with their tricyclic scaffold but 
vary depending on the nature and/or position of the dif-
ferent substituents [38].

Among nine xanthone compounds in the present study 
(2, 3, 4, 8, 9, 10, 11, 12, 13), the results showed that 
they possessed a wide range of antimalarial effects that 
ranged from 9.57 to 74.97 µM. 1-Hydroxy-5,6,7 trime-
thoxyxanthone (9), which contains one hydroxyl group 
and three methoxy groups, showed the highest activity 
(IC50 = 9.57 µM). 3,4,5-Trihydroxyxanthone (10), con-
taining three hydroxyl groups, also possessed good activ-
ity (IC50 = 15.48 µM), whereas 4-hydroxyxanthone (3) 
and 2-hydroxyxanthone (12), which contain only one 
hydroxyl group, possessed weak activity (IC50 = 68.55 and 

Fig. 2  Predicted binding modes and H-bond interactions of two active compounds, artesunate and chloroquine, with the PfLDH enzyme. The backbone 
of the PfLDH enzyme is presented in a blue ribbon model, and all hydrogen bonding residues are shown as stick models and labeled by heteroatoms. 
The compounds are labeled by heteroatoms as follows: yellow for C, white for H, cyan for N, red for O, and green for Cl. Green dashed lines represent 
hydrogen bond interactions and represent bond length in angstroms (Å). a: 1-Hydroxy-5,6,7-trimethoxyxanthone (9), b: 3,4,5-Trihydroxyxanthone (10), c: 
Artesunate, d: Chloroquine
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74.97 µM, respectively). Remarkably, 1,7-dihydroxyx-
anthone (4) and 1,6-dihydroxyxanthone (8), which con-
tain two hydroxyl groups, appeared to have comparable 
activities. The results clearly revealed that the increase 
in the hydroxyl group becomes more frequent with 10 
compared with 3 and 12. Interestingly, the presence of 
a methoxy group also increased the antimalarial effect, 
as observed from the comparison of 5-hydroxy-1-me-
thoxyxanthone (11, IC50 = 29.32 µM) and 4-hydroxyx-
anthone (3, IC50 = 68.55 µM) and as clearly observed in 
1-hydroxy-5,6,7-trimethoxyxanthone (9, IC50 = 9.57 µM), 
the strongest active compound bearing three methoxy 
groups, when compared with 11, which bears only one 
hydroxyl and methoxy group.

In particular, compounds 12, 4, 10 and 9, which con-
tained one, two, three hydroxyl groups, and three 
methoxy groups, respectively, exhibited varying anti-
malarial activities. Compounds that contained a high 
number of hydroxyl and methoxy groups exhibited more 
potent activity. The results clearly show the structure-
activity relationship in which the number of hydroxyl and 
methoxy groups is associated with their biological activ-
ity. Polyhydroxylated and polymethoxylated xanthones 
were crucial for producing an effective compound against 
the P. falciparum K1 strain.

Regarding the antimalarial activity, our study is in 
accordance with previous studies in which xanthone 
and hydroxyxanthone derivatives presented antimalarial 
effect. 2,3,4,5,6-Pentahydroxyxanthone inhibits the in 
vitro growth of both CQ-sensitive and multidrug-resis-
tant strains of P. falciparum. It exerted their antimalar-
ial action by preventing hemozoin formation [39]. For 
hydroxyxanthone derivatives, 1,6,8-trihydroxyxantone 
exhibited the antiplasmodial activity and also inhibited 
heme polymerization [40].

Docking small molecule compounds into the binding 
site of a receptor and estimating the binding affinity of 
the complex are important parts of the structure-based 
drug design process [41]. Therefore, the present study 
also docked M. siamensis compounds with the PfLDH 
enzyme to predict their binding mode and identify 
potential interactions using the molecular docking tech-
nique. The PfLDH enzyme plays an essential role in con-
trolling energy production in Plasmodium. It catalyzes 
the final step in the glycolytic pathway during its anaero-
bic erythrocytic stages of development within the human 
host [42]. For molecular docking, this technique is one of 
the most frequently used methods to predict ligand–pro-
tein interactions in structure-based drug design because 
of its ability to predict with a substantial degree of accu-
racy [43].

The docking results in accordance with the in vitro 
study showed that compounds 9 and 10, which exhib-
ited good antimalarial effects against P. falciparum, 

also strongly interacted with PfLDH with a high bind-
ing energy (-7.35 and − 7.25  kcal/mol, respectively) and 
formed many interactions. Methoxy and hydroxyl groups 
of these compounds play an important role in forming 
hydrogen bonds. For compound 9, all three methoxy 
groups interacted with ARG109, ASN140, and ARG171. 
For compound 10, all three hydroxyl groups extensively 
formed five hydrogen bonds with PHE100, ASN140, and 
SER245.

In compounds that consist of only one hydroxyl group, 
which result in a weak antimalarial effect based on the in 
vitro results, the predicted hydrogen bond interactions 
with PfLDH were weaker interactions than that of poly-
hydroxylated compounds in terms of binding energy. An 
interesting result was observed with compound 9, which 
contains one hydroxyl group but has three methoxy 
groups, and it showed relatively strong affinity with the 
enzyme in terms of lower binding energy.

In the case of mammea coumarins, mammea A/AA 
cyclo D (6) and mammea A/AA cyclo F (7), the docking 
results were also in accordance with the in vitro results. 
These compounds interacted with PfLDH with a low 
binding energy and formed only one and two hydrogen 
bonds for 6 and 7, respectively.

The docking results supported the in vitro antimalar-
ial activity in which the hydroxyl and methoxy groups 
on rings A and B of xanthone are considered to exert 
their antimalarial activity. They are a potential func-
tional group for binding PfLDH active sites, resulting in 
inhibitory action against P. falciparum. The results clearly 
showed that the presence of polyhydroxyl and polyme-
thoxy groups enhances the antimalarial activity of the 
compound, as evidenced by its in vitro activity and bind-
ing energy. The active xanthone compounds interacted 
with PHE100, ARG109, ASN140, ARG171, and SER245 
of the PfLDH active site, suggesting that these amino 
acids are key residues for the active inhibitors, and they 
possibly result in interferences with the energy produc-
tion process of P. falciparum.

Regarding other P. falciparum molecular targets, P. fal-
ciparum dihydrofolate reductase-thymidylate synthase 
(DHFR-TS) and PfATP6, the SERCA-type Ca2+-ATPase 
enzyme present in the malarial parasite have been proven 
to be major molecular drug targets of antimalarial drugs 
[18]. For DHFR-TS, it is a key enzyme in the folate bio-
synthetic pathway that is targeted by antifolates [44]. 
The active xanthone compounds showed the formation 
of a binding interaction between the compounds with 
the amino acids of DHFR-TS including ALA16, SER108, 
PHE58, ASP54 and LEU46, which is the crucial amino 
acids for antimalarial activity [45].
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Conclusion
These findings revealed that isolated compounds from 
M. siamensis flowers exhibited antimalarial activity. Xan-
thones are potent compounds that are responsible for 
the antimalarial activity of this plant. The findings sug-
gest that 1-hydroxy-5,6,7-trimethoxyxanthone could be 
a promising lead structure as a potent inhibitor of the 
PfLDH enzyme. Further in vivo studies are necessary 
to determine the efficacy of the compounds and their 
toxicities.
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