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Luteolin alleviates inflammation 
and autophagy of hippocampus induced 
by cerebral ischemia/reperfusion by activating 
PPAR gamma in rats
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Abstract 

Background:  Luteolin, a flavonoid compound with anti-inflammatory activity, has been reported to alleviate cerebral 
ischemia/reperfusion (I/R) injury. However, its potential mechanism remains unclear.

Methods:  The binding activity of luteolin to peroxisome proliferator-activated receptor gamma (PPARγ) was cal-
culated via molecular docking analysis. Rats were subjected to middle cerebral artery occlusion and reperfusion 
(MCAO/R). After reperfusion, vehicle, 25 mg/kg/d luteolin, 50 mg/kg/d luteolin, 10 mg/kg/d pioglitazone, 50 mg/kg/d 
luteolin combined with 10 mg/kg/d T0070907 (PPARγ inhibitor) were immediately orally treatment for 7 days. ELISA, 
TTC staining, H&E staining, immunohistochemistry, immunofluorescence and transmission electron microscope 
methods were performed to evaluate the inflammation and autophagy in damaged hippocampal region. The PPARγ, 
light chain 3 (LC3) B-II/LC3B-I and p-nuclear factor-κB (NF-κB) p65 proteins expression levels in damaged hippocampal 
region were analyzed.

Results:  Luteolin showed good PPARγ activity according to docking score (score = − 8.2). Luteolin treatment down-
regulated the infarct area and the pro-inflammatory cytokines levels caused by MCAO/R injury. Moreover, luteolin 
administration ameliorated neuroinflammation and autophagy in damaged hippocampal region. Pioglitazone plays 
protective roles similar to luteolin. T0070907 concealed the neuroprotective roles of 50 mg/kg/d luteolin.

Conclusions:  Luteolin exerts neuroprotective roles against inflammation and autophagy of hippocampus induced 
by cerebral I/R by activating PPARγ in rats.
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Background
Ischemic stroke is a critical and debilitating disease 
that leads to high death rate and long-term disabil-
ity. It accounts for 85% of all stroke [1, 2], and is caused 

by blocking the flow of blood to the brain [2]. Restor-
ing blood flow is essential for the treatment of ischemic 
stroke, but reperfusion itself may lead to additional 
injury, called ischemia reperfusion (I/R) injury [3]. 
Anomalous permeability of the blood brain barrier and 
risk of hemorrhagic conversion were increased by reper-
fusion. Current treatments for ischemic stroke are mainly 
mechanical thrombectomy and/or the treatment of ath-
rombolytic drugs [2, 4]. Therefore, more effective drugs 
for ischemic stroke are need to keep trying and exploring.
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Neuroinflammation acts a key event in the immune 
defense by increasing proinflammatory mediators, 
activating microglia, and increasing the proliferation 
of various types of inflammatory cells after cerebral 
I/R [5]. It is known that traumatic brain injury results 
in the dysregulation of autophagy and contributes to 
neuronal death in damaged brain [6, 7]. In cerebral 
I/R injury, researchers found that autophagy protected 
against inhibition of the inflammatory response, and 
the extent of protection was related with the stage 
of the cerebral I/R injury and the level of autophagy 
response [8]. Activation of peroxisome proliferator-
activated receptors (PPARs) has shown neuroprotective 
effects in different neurodegenerative diseases includ-
ing cerebral I/R [9–11]. Activation of PPAR subtypes, 
especially PPAR gamma (PPARγ), has been shown to 
prevent neuronal damage and inflammation in cerebral 
I/R injury through inhibiting the secretion of inflam-
matory cytokines, such as interleukins (IL)-1β and 
tumor necrosis factor (TNF)-α, and stimulating nuclear 
factor-κB (NF-κB) activation thereby attenuating neu-
ronal autophagic death [12, 13]. Thus, activation of 
PPARγ is a potential therapeutic approach for cerebral 
I/R damage.

Luteolin (3′,4′,5,7-tetrahydroxy flavone), a dietary fla-
vone, is found in different plants and has a C6-C3-C6 
structure containing two benzene rings and one oxygen-
containing ring with a C2-C3 carbon double bond [14, 
15]. It has been reported that luteolin could diminish 
infarct size and neutrophil accumulation in the ischemic 
myocardium [12, 16, 17]. In addition, luteolin has anti-
inflammatory and neuroprotective effects in age-related 
neurodegenerative disorders, for example Alzheimer’s 
disease, Parkinson’s disease, diabetes-associated cogni-
tive decline and traumatic brain injury [15]. Luteolin 
exerts good regulatory effects on antioxidant and neuro-
inflammation through inhibiting reactive oxygen species 
(ROS) and inflammatory cytokines in cerebral I/R dam-
age. In particular, Li and colleagues [12] found that luteo-
lin could regulate PPARγ to attenuate neuroinflammation 
in focal cerebral ischemia. Taken together, it is reason-
able to presume luteolin is closely involved in the anti-
inflammatory response through PPARγ after cerebral I/R 
damage.

In this study, we predicted that PPARγ is a target gene 
of luteolin through the Traditional Chinese Medicine Sys-
tems of Pharmacology Database and Analysis Platform 
(TCMSP, https://​tcmsp-e.​com), and luteolin showed 
good PPARγ activity (score = − 8.2) through UCSF chi-
mera software (https://​www.​cgl.​ucsf.​edu/​chime​ra/). It 
provides a good theoretical basis for analyzing the neuro-
protective mechanism of luteolin in rats after middle cer-
ebral artery occlusion and reperfusion (MCAO/R) injury.

Methods
Molecular docking analysis
The 3D structure of the luteolin ligand was retrieved from 
PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/), and the 
three-dimensional structure of PPARγ was downloaded 
from the PDB database (https://​www.​rcsb.​org/). Accord-
ing to a reported study [18], mechanical optimization, 
hydrogenation and charging of the ligand were carried 
out by UCSF chimera software (https://​www.​cgl.​ucsf.​
edu/​chime​ra/). The AutoDock Vina tool was performed 
to obtain molecular docking. A grid box was produced 
that was large enough to cover the entire protein binding 
site and allow all ligands to move freely. Total-score rep-
resents the docking result.

Animals
Seventy-two Sprague Dawley male rats, 200–220 g, 
5–6 weeks old, were obtained (Jinan Pengyue Experimen-
tal Animal Breeding Co., Ltd., China) and housed under 
a 12 h light/dark cycle at 20–24 °C with 40–70% relative 
humidity. The rats were adapted for 1 week with access to 
food and water ad libitum.

MCAO/R model
As previous report [1], rats were intraperitoneally anes-
thetized with 1.5% pentobarbital sodium (0.27 mL / 
100 g). After exposing the bilateral common carotid 
arteries, the right common carotid artery (CCA), exter-
nal carotid artery (ECA), and internal carotid artery 
(ICA) were discriminated. An intraluminal filament was 
inserted into the ICA (17–19 mm) through the ECA 
stump for 120 min. Then, the filament was put out to start 
reperfusion, carefully.

The sham operated rats underwent the same procedure 
without filament occlusion.

Experimental groups
The rats were divided into six groups (12 in each group) 
as follows: 1) sham operated group (sham); 2) MCAO/R 
(vehicle) group, rats underwent MCAO/R and were then 
orally treated with 0.9% sterile saline for 7 days at begin-
ning of reperfusion; 3) luteolin-25 group, rats underwent 
MCAO/R and were then orally treated with 25 mg/kg/d 
luteolin (MFCD00017309, Macklin, Shanghai, China) 
dissolved in 0.9% sterile saline (w/v) for 7 days at begin-
ning of reperfusion [19, 20]; 4) luteolin-50 group, rats 
underwent MCAO/R and were then orally treated with 
50 mg/kg/d luteolin dissolved in 0.9% sterile saline (w/v) 
for 7 days at beginning of reperfusion [19, 20]; 5) piogl-
itazone group, rats underwent MCAO/R and were then 
orally treated with 10 mg/kg/d PPARγ agonist pioglita-
zone (HY-13956, MedChemExpress, Shanghai, China) 
[21] dissolved in 0.9% saline for 7 days at beginning 

https://tcmsp-e.com
https://www.cgl.ucsf.edu/chimera/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.cgl.ucsf.edu/chimera/
https://www.cgl.ucsf.edu/chimera/


Page 3 of 13Li et al. BMC Complementary Medicine and Therapies          (2022) 22:176 	

of reperfusion; 6) luteolin-50 + T0070907 group, rats 
underwent MCAO/R and were then orally treated with 
50 mg/kg/d luteolin combined with 10 mg/kg/d PPARγ 
inhibitor T0070907 (HY-13202, MedChemExpress, 
Shanghai, China) [21] dissolved in 0.9% saline for 7 days 
at beginning of reperfusion.

Enzyme‑linked immunosorbent assays (ELISAs)
After anesthetization with 1.5% pentobarbital sodium, 
blood was taken from the abdominal aorta of the rats. 
The levels of IL-1β (bs-10859R, Bioss, China), IL-6 (bs-
0781R, Bioss, China) and TNF-α (Bsk13003, Bioss, 
China) in the blood was detected by an ELISA kit at an 
absorbance of 450 nm.

2,3,5‑Triphenyltet‑razolium chloride (TTC) staining
All rats were anaesthetized and perfused with phosphate 
buffered saline (PBS) followed by 4% paraformaldehyde. 
After washing with 0.9% saline, the brain was frozen at 
− 20 °C for 10 min. Then, the brain tissue was cut into 6 
sections, and soaked in 1% TTC solution (20,190,917, 
Solarbio, China) at room temperature for 15 min without 
light. The coronal slices were photographed and analyzed 
by Image J software (National Institutes of health, USA). 
Infarct area percent (%) = infarct area/total area × 100%.

Hematoxylin‑eosin (HE) staining
After fixing with 4% paraformaldehyde for 24 h, brain 
tissues were embedded in paraffin, and cut into slices 
(3 μm). After dewaxing with xylene, the sections were 
hydrated with different concentrations ethanol (100%, 
5 min; 95%, 2 min; 80%, 2 min; 70%, 2 min). After that, the 
sections were stained with HE staining solution (G1120, 
Solarbio, China) for 30 min at 55 °C. After washing, the 
slices were separated with 95% ethanol for 1 min, and 
dehydrated with 100% ethanol for 2 min. After clearing 
with the xylene, the slices were sealed with neutral gum 
to observe under an optical microscope (DM1000 LED, 
Leica, Germany).

Immunohistochemistry
The brain slices were heated to boiling in 0.01 mol/L 
sodium citrate buffer (pH = 6.0) using a microwave oven 
(2 times, an interval of 10 min 10 min), cooled at room 
temperature, and washed with 0.01 mol/L PBS (pH = 6.0) 
3 times (5 min/wash). Then, the slices were cultured with 
3% H2O2 for 10 min. The primary antibodies, includ-
ing GFAP (#ab7260, 1:1000, Abcam, China) and Iba-1 
(#ab178847, 1:100, Abcam, China) were cultured with 
the slices overnight at 4 °C. After washing with PBS, 
the goat secondary antibody (1:500, Thermo Fisher Sci-
ence, China) was added to the culture for 60 min at 37 °C. 
After that, the slices were stained with diaminobenzidine 

(DAB) at 37 °C for 30 s and dehydrated, purified and 
sealed. The expressions of index were observed and pho-
tographed using an optical microscope. Positive protein 
expression was analysed using Image J software. Positive 
expression (%) = Positive area/total area × 100.

Immunofluorescence
The brain slices (3 μm) were dewaxed and hydrated as 
descripted in HE staining. Then, the slices were heated 
to boiling in 0.01 mol/L sodium citrate buffer (pH = 6.0) 
using a microwave oven (2 times, an interval of 10 min), 
cooled at room temperature and washed with 0.01 mol/L 
PBS (pH = 6.0) for 3 times (5 min/wash). Then, the slices 
were cultured with 3% H2O2 for 10 min. The primary 
antibodies, including GFAP (#ab7260, 1:1000, Abcam, 
China), Iba-1 (#ab178847, 1:100, Abcam, China), LC3B 
(#ab63817, 1:1000, Abcam, China), NeuN (#ab104224, 
1:1000, Abcam, China), were cultured with the slices 
for overnight at 4 °C. After washing, the goat second-
ary antibody (1:500, ThermoFisher Science, China) were 
added to culture for 60 min at 37 °C. After that, the slices 
were counterstained with 4′,6-diamidino-2-phenylindole 
(DAPI) at 37 °C for 5 min. After washing with PBS and 
quenching fluorescence, a laser confocal microscope 
(LSM800, Zeiss, Germany) was used to observe the 
results.

Transmission electron microscope (TEM)
The damaged hippocampal region was fixed with elec-
tron microscope fixing solution (G1102, Servicebio) at 
4 °C for 4 h. After washing with 0.1 M phosphate buffer 
(pH 7.4) 3 times, 15 min each time, 1% osmic acid 0.1 M 
phosphate buffer was added at 20 °C for 2 h. After wash-
ing, the tissues were dehydrated with an ethanol gradient 
(50–70%-80–90%-95–100%) followed by 100% ethanol 
for 15 min each time. Then, the tissues were embedded 
with acetone: 812 embedding agent (90529–77-4, SPI) 
=1: 1 for 4 h, and embedded with acetone: 812 embed-
ding agent = 1: 2 for overnight. The samples were inserted 
into the embedding plate with 812 embedding agent at 
37 °C overnight and 60 °C for 48 h. Slices (60 nm) were 
cut using ultra-thin slicer (Leica UC7, leica), and stained 
with 2% uranium acetate saturated alcohol solution for 
15 min and lead citrate for 15 min. The slices were dried 
at room temperature and observed under TEM (HT7700, 
HITACHI).

Western blot
The damaged hippocampal region tissues were separated 
with RIPA buffer (Beyotime, China) on ice and homoge-
nized to extract protein. Forty μg proteins were separated 
with 12% SDS-PAGE (Bio-Rad, China) and transferred 
to PVDF membranes (EMD Millipore). After blocking 
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with 5% milk for 1.5 h, the membranes were incubated 
with appropriate primary antibodies diluted with 5% BSA 
for overnight at 4 °C. The primary antibodies consisted 
of phospho-PPARγ (ser273) (1:1000, bs-4888R, Bioss, 
China), LC3BI/II (1:1000, 4108, Cell signaling technology, 
China), phospho-NF-κB p65 (1:800, bs-230303R, Bioss, 
China), GAPDH (1:1000, bs-0755R, Bioss, China). After 
washing with TBS-0.01% Tween 20 for 3 times (10 min/
wash), the secondary antibody Goat Anti-rabbit lgG/
HRP (1:1000, bs-0295G-HRP, Bioss, China) was cultured 
with the membranes for 2 h at 25 °C. After washing, the 
signals were visualized using enhanced chemilumines-
cence reagent (D085075, Bio-Rad, China).

Statistical analysis
Data analysis was carried out with SPSS 20.0 (National 
Institutes of Health) software. The analysis results were 
expressed as mean ± standard deviation, and the differ-
ences among groups were analyzed using one-way anal-
ysis of variance (ANOVA), followed by Tukey post-test. 
P < 0.05 was considered significant.

Results
Luteolin binds to PPARγ and reduces the infarct area 
in MCAO/R treated rats
Total score indicates the inter molecular energy 
(kcal/mol), representing the stability between the 
ligand and receptor. The more negative the value is, 
the more stable the binding. As screening condition 
(the absolute value of a total score greater than 6.8), 
there was a good activity of luteolin against PPARγ 
(total score = − 8.2, Fig.  1A). In order to confirm 
luteolin improves brain injury induced by MCAO/R 
through PPARγ in rats, we designed this experiment 
(Fig.  1B). The brain infarct area was observed using 
TTC staining (Fig. 1C) and the infarct area is shown 
in white. From Fig.  1C, we found that 25 mg/kg/d 
luteolin and 50 mg/kg/d luteolin greatly reduced the 
infarct area when contrasted to the MCAO/R (vehi-
cle) group. Interestingly, the results of pioglitazone 
were similar to the 50 mg/kg/d luteolin, but addi-
tion of T0070907 hampered the protective effect of 
50 mg/kg/d luteolin.

Fig. 1  Luteolin binds to PPARγ and reduced the infarct area in MCAO/R treated rats. A The result of molecular docking; B The diagram of this 
experiment; C The infarct area was measured by TTC staining, and the infarct area (%) was counted through Image J software. Vs. sham group, 
**p < 0.01; Vs. vehicle group, ##p < 0.01; Vs. luteolin-25 group, &p < 0.05, &&p < 0.01; Vs. luteolin-50 group, ^^p < 0.01
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Luteolin improved hippocampal injury and reduced 
inflammatory factors through PPARγ in MACO/R treated 
rats
Changes of pathology in the damaged CA1 hippocam-
pal region were observed through HE staining (Fig.  2A). 
MCAO/R resulted in a large of nerve cells shrink (red 
asterisks). After treatment with luteolin or pioglitazone, the 
numbers of nerve cells shrink decreased. Meanwhile, the 
protective effect of 50 mg/kg/d luteolin was suppressed by 
T0070907 administration. The inflammatory factor levels 
of IL-1β, IL-6 and TNF-α in serum (Fig. 2B) were obviously 
increased in other groups compared to the sham group. 
After administration of different doses of luteolin, the lev-
els of the above pro-inflammatory factors were significantly 
decreased, and there was a significant difference between 
the luteolin-25 group and the luteolin-50 group. Compared 

with the luteilin-50 group, no difference was found in the 
pioglitazone group, but a significant difference was found 
in the luteilin-50 + T0070907 group.

Luteolin reduced hippocampal neuroinflammation 
through PPARγ in MACO/R treated rats
The activation of glial cells, astrocytes (GFAP, Fig.  3A 
and Fig. 4A) and microglial (Iba-1, Fig. 3B and Fig. 4B), 
were observed in damaged CA1 hippocampal region 
through immunohistochemistry and immunofluores-
cence. The GFAP and Iba-1 expression levels were ana-
lyzed by Image J software. Compared with the sham 
group, GFAP and Iba-1 expression in the damaged 
CA1 hippocampal region were obviously increased 
after MCAO/R injury. With the increase of luteolin, 
the expression levels of GFAP and Iba-1 were clearly 

Fig. 2  Luteolin improved hippocampal injury and reduced inflammatory factors through PPARγ in MCAO/R treated rats. A The changes of 
pathology in damagedCA1 hippocampal region were observed by HE staining, nerve cells shrink (red asterisks). B The levels of IL-1β, IL-6 and TNF-α 
in serum by ELISA. Vs. sham group, **p < 0.01; Vs. vehicle group, ##p < 0.01; Vs. luteolin-25 group, &&p < 0.01; Vs. luteolin-50 group, ^^p < 0.01
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decreased. At the same time, the PPARγ agonist piogl-
itazone treatment significantly suppressed the activa-
tion of GFAP and Iba-1 caused by MCAO/R injury. 
However, the PPARγ inhibitor T0070907 hampered the 
effects of 50 mg/kg luteolin.

Luteolin reduced vacuolization of mitochondria 
in damaged hippocampus through PPARγ in MCAO/R 
treated rats
Changes of mitochondria morphology (red arrows) in 
damaged CA1 hippocampus was observed through TEM 

Fig. 3  Luteolin suppressed GFAP and Iba-1 activation through PPARγ in damaged hippocampus in MCAO/R treated rats. The GFAP (A) and Iba-1 (B) 
expression levels in damaged CA1 hippocampal region were observed by immunohistochemistry. The positive expression was analyzed by Image J 
software. Vs. sham group, **p < 0.01; Vs. vehicle group, #p < 0.05, ##p < 0.01; Vs. luteolin-25 group, &p < 0.05, &&p < 0.01; Vs. luteolin-50 group, ^^p < 0.01
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Fig. 4  Luteolin reduced hippocampal neuroinflammation through PPARγ in MCAO/R treated rats. The GFAP (A) and Iba-1 (B) expression levels in 
damaged CA1 hippocampal region were observed using immunofluorescence, Scar bar = 20 μm. The mean gray value counted through Image J 
software. Vs. sham group, **p < 0.01; Vs. vehicle group, ##p < 0.01; Vs. luteolin-25 group, &p < 0.05, &&p < 0.01; Vs. luteolin-50 group, ^^p < 0.01
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(Fig.  5). The structure of mitochondria was obvious and 
complete in the sham group, while the mitochondria vacu-
ole degenerated in the MCAO/R group. After treatment 

with luteolin or pioglitazone, the vacuolization of mito-
chondria was suppressed However, the protective of luteolin 
(50 mg/kg) were inhibited by T0070907.

Fig. 5  Luteolin reduced vacuolization of mitochondria in damaged hippocampus through PPARγ in MCAO/R treated rats. Red arrows represented 
mitochondria. Scar bar = 5.0 μm, 2.0 μm
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Luteolin reduced LC3B expression in damaged 
hippocampus through PPARγ in MCAO/R treated rats
The expression of NeuN and LC3B in the damaged CA1 
hippocampal region was measured through immuno-
fluorescence (Fig.  6). In Fig.  6B, the mean gray value of 
NeuN was significantly decreased after MCAO/R injury 
compared with the sham group. After treatment with 
luteolin or pioglitazone, the mean gray values of NeuN 
were clearly increased. But, the T0070907 treatment sup-
pressed the roles of luteolin (50 mg/kg). In Fig.  6C, the 
mean gray of LC3B was notably increased after MCAO/R 
injury contrasted to the sham group. Luteolin or piogl-
itazone administration inhibited the mean gray values 
of LC3B compared with the vehicle group. The PPARγ 
inhibitor T0070907 masked the protection of luteolin 
(50 mg/kg) on the MCAO/R injury.

Luteolin activated p‑PPARγ and suppressed LC3B 
and p‑NF‑κB p65 proteins in damaged hippocampus 
in MCAO/R treated rats
The proteins expression levels of p-PPARγ, LC3B-II/
LC3B-I and p-NF-κB p65 in the damaged CA1 hip-
pocampus were showed in Fig.  7. The results showed 
that MCAO/R injury downregulated the levels of 
p-PPARγ, and upregulated the levels of LC3B-II/LC3B-I 
and p-NF-κB p65. Additionally, luteolin or pioglitazone 
treatment clearly increased the expression of p-PPARγ, 
and decreased the expression of LC3B-II/LC3B-I and 
p-NF-κB p65. Contrasted to the luteolin-50 group, the 
above proteins expression was greatly reversed in the 
luteolin-50+ T0070907 group.

Discussion
In this research, we verified our hypothesis in rats, that 
luteolin played a neuroprotective effect on rats with 
MCAO/R by activating PPARγ. After treating with 25 mg/
kg/d or 50 mg/kg/d luteolin for 7 days after MCAO/R 
injury, the infarct area and pro-inflammatory cytokines 
levels were significantly decreased. Further experiments 
revealed that luteolin ameliorated the CA1 hippocampus 
damage by decreasing glial cells activation and reducing 
autophagy in MCAO/R treated rats. To clarify whether 
luteolin plays protective roles by mediating PPARγ in 
MCAO/R treated rats, we selected the PPARγ agonist 
pioglitazone and PPARγ antagonist T0070907 for study. 
Finally, we found that the results of pioglitazone were 
consistent with the 50 mg/kg/d luteolin, but T0070907 

destroyed the reparative effects of 50 mg/kg/d luteolin on 
MCAO/R injury in rats.

MCAO/R injury could cause extensive immunocyte 
to enter the brain and activate neuroglial cells to excrete 
proinflammatory cytokines that take part in the forma-
tion and development of brain oedema as well as damage 
the plerosis of neurons [22, 23]. After stroke, neuroin-
flammation was exacerbated due to activated microglia 
that promoted peripheral leukocytes infiltration and 
proinflammatory cytokines release and adjacent blood 
vessels engulfment [24]. NF-κB could be activated by pro-
inflammatory cytokines, such as IL-1β, IL-6 and TNF-α 
[25, 26]. Subunits of NF-κB p65 are integral in mediating 
the MCAO/R induced inflammatory response, which is 
a main inducer of inflammation and apoptotic cell death 
[27, 28]. Our findings also confirmed that the NF-κB 
pathway participates in the neuroinflammation response 
induced by MCAO/R injury. It has been reported that 
luteolin could downregulate inflammatory cytokine pro-
duction after myocardial I/R injury in diabetic rats [29]. 
For traumatic brain injury (TBI), luteolin decreased the 
nuclear accumulation of NF-κB p65 and the production 
of IL-1β and TNF-α after injury [30]. Here, luteolin treat-
ment exerted anti-inflammatory effects by activating 
PPARγ in rats with MCAO/R. Here, luteolin treatment 
exerted anti-inflammatory effects by activating PPARγ in 
rats with MCAO/R.

Normally, cells remove damaged cell organs and poi-
sonous macromolecules through autophagy, which is a 
highly conserved cellular degradative process. Basal levels 
of autophagy are important for maintaining the stability of 
the intracellular environment, which is essential for neu-
rons function and the survival [6, 31, 32]. Salkar et al. [6] 
found that autophagy protein LC3 and autophagosomes 
accumulated in hippocampus japonicus within hours after 
TBI, and remained rose for at least 1 week. Zhang et al. [31] 
reported that dysfunctional lysosomal storage is associated 
with the early burst of autophagy in neurons following 
MCAO. Mitochondria are organelles that act as the oxida-
tive energy centers and are necessary for cell survival, and 
autophagosomes eventually fuse with lysosomes to form 
autolysosomes, which target mitochondria for autophagy 
clearance [33]. Damaged mitochondria are the sources 
of toxic ROS, and result in the MCAO/R induced brain 
injury [33]. In this study, our data demonstrated that LC3B 
accumulated in the damaged hippocampus after MCAO/R 
injury, and luteolin treatment alleviated brain injury by 

(See figure on next page.)
Fig. 6  Luteolin reduced LC3B expression in damaged hippocampus through PPARγ in MCAO/R treated rats. A The NeuN and LC3B expression levels 
in damaged CA1 hippocampal region were observed using immunofluorescence, Scar bar = 20 μm. The mean gray values of NeuN (B) and LC3B (C) 
were analyzed through Image J software. Vs. sham group, **p < 0.01; Vs. vehicle group, #p < 0.05, ##p < 0.01; Vs. luteolin-25 group, &p < 0.05, &&p < 0.01; 
Vs. luteolin-50 group, ^p < 0.05, ^^p < 0.01
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regulating autophagy. These results were supported by a 
previous report that luteolin affects the autophagy process 
in TBI [30]. PPARγ agonist could stimulate mitochondrial 
activity and inhibition of PPARγ led to mitochondrial fis-
sion and hyperpolarization to increase ROS [34, 35]. This 
study showed luteolin treatment improved mitochon-
drial vacuolization and LC3B accumulation in damaged 
hippocampus by activating PPARγ activity in MCAO/R 
treated rats, demonstrating a possible mechanism of luteo-
lin treatment on MCAO/R injury.

Luteolin possesses multiple biological and pharmaco-
logical activities, including antioxidant and anti-inflam-
matory actions [36, 37]. For MCAO injury, luteolin 
treatment attenuates neuroinflammation [12, 38] and oxi-
dant [17] through inhibiting matrix metalloproteinase-9 
(MMP9) and NF-κB signaling, increasing NF-E2 related 
factor (Nrf2) and PPARγ. Activation of PPARγ inhibits 
the stimulation of NF-κB and the secretion of inflamma-
tory cytokines to attenuate neuronal autophagic death 
[12]. Consistent with these results, our data showed that 
luteolin administration suppressed neuro-inflammation 

Fig. 7  Luteolin increased p-PPARγ and suppressed LC3B and p-NF-κB p65 proteins in the damaged hippocampus in MCAO/R treated rats. A The 
expression levels of p-PPARγ, LC3B and p-NF-κB p65 proteins were tested using western blot. The relative expression of p-PPARγ (B), LC3B-II/LC3B-I 
(C), and p-NF-κB p65 (D) in the damaged hippocampal region was analyzed via Image J software. Vs. sham group, *p < 0.05, **p < 0.01; Vs. vehicle 
group, #p < 0.05, ##p < 0.01; Vs. luteolin-25 group, &p < 0.05, &&p < 0.01; Vs. luteolin-50 group, ^p < 0.05, ^^p < 0.01
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and autophagy in the hippocampus after MCAO/R 
through activating PPARγ. A good activity of luteolin to 
PPARγ (score = − 8.2) was also confirmed by molecular 
docking analysis. These findings indicate luteolin as a 
potential therapeutic agent for MCAO/R injury.

However, the improvement of this repair process and 
neurological results are limited in this study. Therefore, 
a valid therapy, such as the drug combination, must be 
developed to increase the improvement after MCAO/R 
damage. Additionally, it has reported that luteolin sup-
pressed MCAO induced neuroinflammation through 
regulating PPARγ/Nrf2/NF-κB pathway in rats [12]. 
Luteolin promoted the nuclear translocation of Nrf2 
following intracerebral hemorrhage in rats [39]. But the 
relationship between the nuclear translocation of Nrf2 
and PPARγ in MCAO/R injury is not unclear. Further-
more, the specific details of luteolin regulating autophagy 
and affecting mitochondrial function in MCAO/R injury 
remain unclear. More in-depth study is to be continued.

Conclusions
This present study found that luteolin attenuated neuro-
inflammation and autophagy in the damaged hippocam-
pus by activating PPARγ in MCAO/R rats, suggesting 
that luteolin treatment might be as a useful pharmaco-
logical strategy for improving cerebral I/R damage.
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