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Abstract 

Background:  Busulfan is an antineoplastic medication that is broadly utilized for cancer treatment. It affects the 
testicular function and leads to sterility. The present study aimed to evaluate the effects of ellagic acid on testicular tis-
sue changes, sexual hormones, antioxidant defense system, and caspase-9 and Bcl2 gene expression in the busulfan-
induced relative sterile rat model.

Methods:  This is an interventional-experimental animal study that was performed on 65 Adult male rats; they were 
randomly divided into five groups including control (1 ml of 0.9% normal saline), ellagic acid (50 mg/kg); busulfan 
(10 mg/kg); and busulfan plus ellagic acid (10 mg/kg and 50 mg/kg). At the end of the experiment, blood samples 
were collected, and plasma levels of sex hormones, antioxidant system, apoptosis-related genes, and testis histology 
were assessed.

Results:  Busulfan reduced the levels of serum testosterone, total antioxidant capacity, gene expression of Bcl2, 
testicular volume, seminiferous tubule, germinal epithelium, interstitial tissue volume, and the number of spermato-
gonia, spermatocyte, round spermatid, elongated spermatid, Sertoli cells and Leydig cells (p < 0.05). Busulfan adminis-
tration resulted in a significant increase (p < 0.05) in the level of LH, FSH, malondialdehyde, and caspase 9. Busulfan + 
ellagic acid (50 mg/kg) showed higher serum levels of testosterone, gene expression of Bcl-2 and antioxidant markers, 
and lower LH, FSH levels, and gene expression of caspase 9 compared to the Busulfan-treated rats (p < 0.05). Stereo-
logical parameters were also ameliorated in the group treated with Busulfan+ 50 mg/kg ellagic acid (p < 0.05).

Conclusion:  In conclusion, the consumption of ellagic acid may have beneficial effects on the antioxidant defense 
system, sexual hormone abnormality, and testicular tissue damage induced by busulfan.
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Background
Chemotherapy and radiation are associated with many 
changes in the reproductive system, among which 
alkylating agents cause the most adverse effects on the 
gonads [1]. It has been shown that almost 72.4 million 
couples around the world suffer from infertility. Also, 
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the reported infertility rates were 3.3% in Iran [2]. Today, 
especially in developed countries, successful treatment 
of malignancy and the life expectancy of these individu-
als have notably increased, and most of them, especially 
young people, tend to be fertile after disease recovery [3].

Busulfan is one of the drugs used in chemotherapy that 
has alkylating properties and leads to enhanced oxida-
tive stress, apoptosis, and necrosis; it finally decreases 
the activity of the gonads and increases the endocrine 
abnormality [1, 4, 5]. Furthermore, it is commonly used 
to treat chronic leukemia and ovarian cancer [6, 7]. This 
drug is part of the methane sulfonic acid di esters group 
called 1,4-butanediol dimethanesulfonate [8]. According 
to previous studies, the fetus or neonate of rats that were 
born from pregnant mothers who had been exposed to 
busulfan during pregnancy had gonadal dysfunction and 
reduced the testicular germ cells and somatic cells [9, 10]. 
Bahmanpour et  al. (2017) have revealed that testicular 
stereological parameters such as the weight and volume 
of the testes; tubules volume density; interstitial tissue; 
germinal epithelium; the number of spermatogonia, sper-
matocyte, round and elongated spermatid; and the Sertoli 
and Leydig cells significantly reduced by busulfan treat-
ment and its related induced oxidative stress [11]. On 
the other hand, previous research has indicated various 
adverse effects of busulfan injection on the male repro-
ductive system including decreased epididymis volume, 
Oligospermia, increased apoptotic sperm, and changes in 
the serum levels of testosterone, induced oxidative stress, 
and cytotoxicity [12–14]. Administration of busulfan, as 
a single dose, in high doses (40-55 mg/kg body weight) in 
adult mice induces azoospermia [15, 16].

Chemotherapeutic drugs cause damage to the mito-
chondrial membrane by producing free radicals [17]. 
Overproduction of reactive oxygen species (ROS) plays 
a potential role in mitochondrial membrane damage and 
stimulation of the release of cytochrome c which leads 
to the initiation of the intrinsic apoptosis pathway in the 
testicular tissue cells [18]. It has been shown that ROS 
reacts rapidly with membrane lipids, thereby resulting 
in lipid peroxidation (LPO) and cell loss [19]. Moreover, 
excessive production of ROS could lead to DNA dam-
age, endothelial injury, apoptosis, and necrosis of the 
germinal cells. Therefore, ROS leads to severe damage 
to the reproductive tissues [18, 20, 21]. The release of 
cytochrome C is controlled by the BCL-2 family proteins 
located in the inner mitochondrial membrane [22]. The 
BCL-2 family proteins are composed of two groups anti-
apoptotic and pro-apoptotic. The anti-apoptotic group 
consists of BCL-2 and BCL-XL which inhibits the release 
of cytochrome C into the cytosol, and the pro-apoptotic 
group includes Bid, Bax, and Bad, which release the 
cytochrome C from the mitochondrial cytosol [22, 23].

Caspases are a variety of cysteine-aspartate enzymes of 
the apoptotic pathway that play an important role in reg-
ulating apoptosis. Caspases are classified into two types 
of initiation and functional, including caspases 8, 9, and 
10, and caspases 3, 6, and 7, respectively. The outer path-
way contains caspases 8 and 10 and the inner pathway 
contains caspase 9, both of which are convergent path-
ways and utilize functional caspases that cascade acti-
vated and lead to cell destruction. Thus, it can serve as a 
suitable candidate gene for the study [24–28].

Several methods are used to prevent infertility after 
chemotherapy including freezing testicular and ovarian 
tissue, enhancing the resistance of sex stem cells, and 
helping to maintain the activity or repair of these cells, 
including maintaining cells. Among them, maintaining 
cells during chemotherapy has been considered more 
important than other methods [29–31]. Therefore, the 
administration of antioxidants seems to be essential for 
reducing oxidative stress and detoxification of the tis-
sues [32, 33]. One of the substances more considered by 
researchers is ellagic acid. Ellagic Acid (2, 3, 7, 8-Tetrahy-
droxy-Chromeno (3, 4, 5-Cd) Chromeno-5, 10-Dione), 
with a molecular weight of 302 g/mol, is a polyphenolic 
compound. It is a natural and potential antioxidant found 
in most fruits, seeds, and vegetables including green tea 
and other natural sources including pomegranate, straw-
berry, blackberry, walnut, and mango [34, 35]. Like other 
polyphenols [36, 37], it has various features including 
anticancer [38] and antioxidant properties [39]; it has a 
direct protective effect against oxidative damage and can 
neutralize oxidative reactions [40]. Ellagic acid increases 
the activity of the antioxidant enzymes such as catalase, 
superoxide dismutase, and glutathione peroxidase, which 
are altered in diseases caused by free radicals [41]. It also 
inhibits the production of free radicals mediated by iron 
in  vitro [42]. Previous studies have shown that ellagic 
acid reduces the side effects of arsenic, cisplatin, tobacco 
smoke, and monosodium glutamate-induced testicular 
structural alterations in male rats [43–46].

We hypothesize that Ellagic acid improves the tes-
ticular function and structure in a rat model of sterility 
induced by busulfan. Hence, the present study aimed to 
investigate the effect of ellagic acid on sexual hormones 
(testosterone, luteinizing hormone (LH), and follicle-
stimulating hormone (FSH)), antioxidant system, ste-
reological changes, and Gene Expression of Bcl-2 and 
Caspase-9 in the relative sterile rat model following 
administration of busulfan.

Methods
Experimental animals
At the beginning of the experiment, 65 male Sprague-
Dawley rats (3 months old, weighing 200–250 g) were 
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purchased from the Laboratory Animals Research Center 
(Shiraz University of Medical Sciences, Iran). The sam-
ple size was estimated according to previous studies [11]. 
The animals were acclimatized to the laboratory con-
ditions for 2 weeks before the initiation of the experi-
ments. They were fed with rodent chow (Behparvar 
Co., Tehran, Iran) and water during the study. Rats were 
kept in stainless steel cages in a temperature-controlled 
(22–25 °C) environment with 12 hr. light/dark cycles and 
55% humidity [47]. All of the protocols of the study were 
under ARRIVE and NIH guidelines for reporting animal 
experiments and were approved by the Institutional Ani-
mal Ethics Committee of Fasa University of Medical Sci-
ences (Fars, Iran) with ID of 97,024.REC1397.105.

Induction of relative sterility
The relative sterility rat model was induced by intraperi-
toneal administration of a single dose of 10 mg/kg busul-
fan (Pierre Fabre, France) according to a study conducted 
by Bahmanpour et al. (2017) [11].

Experimental design
The rats were divided randomly into five groups of 13 
rats per group.

Group 1, the control group, received 0.9% saline solu-
tion as a vehicle (orally once per day for 48 days).

Group 2, the ellagic acid group (E.A 50), received 
50 mg/kg b.w ellagic acid [19] orally once per day for 
48 days.

Group 3, the busulfan group (BUS), received a single 
dose of the intraperitoneal injection of 10 mg/kg of busul-
fan [11].

Group 4, the treatment group (BUS+ E. A 10), received 
a single dose of busulfan (10 mg/kg a single i.p. injec-
tion) + 10 mg/kg b.w ellagic acid [45] orally once per day 
for 48 days.

Group 5, the treatment group (BUS+ E. A 50), received 
a single dose of busulfan (10 mg/kg a single i.p. injec-
tion) + 50 mg/kg b.w ellagic acid orally once per day for 
48 days (Fig. 1).

During the study, the animals were weighed by a digi-
tal scale (BAOSHISHAN ZQ-563, China) once a week. 
At the end of the 48-day treatment, after 12 hours of fast-
ing and under anesthesia with ketamine (10%)/ xylazine 
(2%) mixture (80/5 mg/kg) (Alfasan, Netherland), 5 ml 
of blood was collected by cardiac puncture. In the pre-
sent study, the animals were sacrificed by an overdose of 
sodium thiopental (100 mg/kg, intraperitoneal).

Determination of biochemical parameters
The blood samples were centrifuged at 3500 rpm for 
10 min to separate the sera and stored at − 80 °C before 
biochemical measurements. The sex hormones including 

testosterone, LH, and FSH were assessed by rat hormone 
ELISA kits (Bioassay Technology laboratory, BIOTECH 
company, China). Catalase activity and total antioxidant 
concentration (Zellbio Co, German) were measured 
using spectrophotometry [48] and glutathione peroxi-
dase (GPX) enzyme activity by the Biorex kit (Fars, Iran). 
Serum malondialdehyde (MDA) concentrations were 
determined by a colorimetric method [49].

RNA isolation and quantitative RT‑PCR determination 
of Caspase‑9 and Bcl‑2 gene expression levels
The total RNA from the testicular tissue was isolated 
using the TRIzol reagent (Invitrogen), and the cDNA 
was synthesized following the manufacturer’s protocol, 
using 1 μg RNA (Prime Script™ RT reagent Kit, Takara). 
RT-PCR was done using a standard SYBR-Green PCR kit 
(SYBR Premix EX Taq™ II, Takara), and the gene-specific 
PCR amplification was conducted using the Applied Bio-
systems StepOnePlus™ Real-Time PCR System (Applied 
Biosystems, USA). The qRT-PCR reactions, including 
the no-template controls, were done in triplicate. Each 
PCR reaction was performed in a 20 μL solution contain-
ing 0.8 μL (10 μM) each of forward and reverse primers, 
10 μL of Premix Ex Taq DNA polymerase, 0.4 μL of ROX 
reference dye, 6 μL of dH2O, and 2 μL of reverse tran-
scription reaction products. The qRT-PCR primers used 
in the experiment are listed in Table 1. All experiments 
were performed in quadruplicate. Relative expression 
was determined by the 2-ΔΔCt method using the house-
keeping gene, GAPDH, as an internal control, and the 
fold change was calculated through comparison with the 
corresponding control group [50]. Primer sequences are 
demonstrated in Table 1.

Stereological study
The left testicle tissue was separated from all the sur-
rounding tissues and harvested; then, the weights of the 
testicles were calculated by scales, and the primary vol-
ume was determined using the immersion technique 
[51]. The Orientator method was used to acquire Iso-
tropic uniform random. In the next step, we put the sliced 
testes in paraffin molds, so that the trocar fragment was 
placed in the middle of the other parts. Then, we pre-
pared 5-μm-thick sections for calculation of the volume 
density and 20-μm-thick sections for calculation of the 
number of cells. Tissue sections were dyed with Hema-
toxylin-Eosin (H&E) and Trichrome Masson [52]. After 
preparing the slides, stereology software was used for the 
analysis of the results.

The degree of shrinkage was assessed by the following 
formula based on the volume of the tissue [51, 52]:
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Then, the following formula was used to calculate the 
germinal epithelium, tubules, and interstitial space vol-
ume ratio [51, 52].

Volume Shrinkage = 1− (Area after/Area before)1.5

Where the “ΣPStructure” was the number of points hit-
ting the profiles of the germinal epithelium or tubules 

Vv(structure) =

n

i=1

p (structure)/

n

i=1

(reference)

Fig. 1  Schematic representation of the experimental design, showing the study groups and the timeline. I.P., intraperitoneal injection; E.A., Ellagic 
Acid; BUS: Busulfan

Table 1  Gene specific-forward and reverse primer sequences

Primer GC% Length (bp) TM Sequences (5′- > 3′) PCR 
Product 
length

Cas9:F 55 20 60.39 ACA​TCT​TCA​ATG​GGA​CCG​GC 85 bp

Cas9:R 52.38 21 60.20 TCT​TTC​TGC​TCA​CCA​CCA​CAG​

GAPDH:F 50 20 59.96 AAA​GAG​ATG​CTG​AAC​GGG​CA 100 bp

GAPDH:R 47.62 21 59.79 ACA​AGG​GAA​ACT​TGT​CCA​CGA​

Bcl-2:F 50 20 57.78 GGA​GGA​TTG​TGG​CCT​TCT​TT 100 bp

Bcl-2:R 50 20 57.98 GTC​ATC​CAC​AGA​GCG​ATG​TT
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or interstitial tissue, and “ΣP references” was the number 
of points hitting the testis. The method of calculation of 
numerical density and the absolute number of cells [51–
53] was as follows:

Where ΣQ was the number of the whole cells counted 
in all the dissectors, h was the height of the optical dis-
sector, a/f was the area of the counting frame, Σp was 
the total number of the counted frames, BA was the 
microtome block advance to cut the block, and t was the 
mean of the final section thickness.

Epididymis sperm analysis
The terminal part of the epididymis was removed from 
each rat, minced, and placed in a watch glass containing 
5 ml of Ham’s F10 medium and kept in the incubator at 
37 °C for 5 min. Afterward, one drop of solution was added 
to the Neubauer hemocytometer (Deep 0.1 mm, LAB 
ART, Germany). The number of sperms in four squares of 
the Neubauer chamber was counted. The mean was mul-
tiplied by 106 to obtain the total number of sperm cells per 
mL of semen. For the assessment of sperm morphometry, 
after the preparation of the sperm smear, the slides were 
air-dried and then fixed with 96% ethanol. Then, the slides 
were stained with 1% eosin Y for 5-10 minutes and then 
left to dry. 100 spermatozoa were counted per rat for each 
sample, and the percentage of abnormal spermatozoa was 
specified. To calculate the sperm motility, the motility of 
100 spermatozoa was assessed in ten microscopic fields 
at × 40 magnification, and then the mean of sperm motil-
ity was reported as a percentage. Spermatozoa motility 
was classified as 1: rapid progressive when spermatozoa 
moved rapidly and linearly; 2: immotile when spermato-
zoa showed no movement [54].

Statistical analysis
Statistical analysis was done using SPSS software, ver-
sion 23 (SPSS Inc., Chicago IL). Data were expressed as 
mean ± standard deviation (SD). the normally distributed 

Nv =

∑n
i=1 Q

∑n
i=1 P× h ×

(

a
f

) ×

t

BA

data were compared between the groups by one-way 
ANOVA test (and Tukey test as post hoc), and non-nor-
mally distributed data were compared using the Kruskal-
Wallis test (and Mann–Whitney U-test as post hoc). A 
P-value of < 0.05 was considered statistically significant.

Results
Effects of ellagic acid on body weight in busulfan‑induced 
relative sterility in rats
Bodyweight significantly decreased (P  = 0.001) in the 
BUS group compared to the control and E.A.50 groups. 
Our findings showed that there was a significant increase 
in the body weight in the BUS+E.A.50 group (P = 0.011) 
compared to the BUS group. Also, there were no signifi-
cant changes in the body weight in E.A.50 treated group 
compared to the control group (Table 2).

Effects of ellagic acid on sexual hormones 
in busulfan‑induced relative sterility in rats
The concentration of LH and FSH significantly increased 
in the BUS group compared to the control group 
(P <  0.001), while that of testosterone decreased in the 
busulfan treated group when compared to the control 
group (P <  0.001). In addition, LH and FSH concentra-
tions in EA. 50 and BUS+EA.50 groups were similar to 
the control, (p < 0.05). The testosterone levels in the EA50 
and BUS+EA.50 groups were similar to those in the con-
trol rats (p < 0.05) (Table 2).

Effects of ellagic acid on antioxidant parameters 
in busulfan‑induced relative sterility in rats.
A significant decrease in TAC, catalase, and GPX levels 
was observed in the BUS group compared to the con-
trol group (P <  0.001). Also, the MDA level in the BUS 
group was significantly higher than in the healthy group 
(P <  0.001). TAC and catalase activity was significantly 
increased in the BUS+ E.A.10 and BUS+ E.A.50 groups 
compared to the BUS group (P <  0.01). MDA concen-
tration was significantly decreased in the BUS+ E.A.10 
and BUS+ E.A.50 groups compared to the BUS group 
(P <  0.001). Also, the GPX activity was significantly 

Table 2  Evaluation of the body weight, LH, FSH, and testosterone concentrations in experimental groups

a , b, c, ab, ac, and bc: According to post-hoc Tukey test which was used for intergroup comparisons, groups with the same superscripts are not significantly different at α 
= 0.05 (p ≥ 0.05). However, dissimilar letters indicate a significant difference (p < 0.05)

Group Body weight (g) LH (mIU/ml) FSH (mIU/ml) TES (nmol/L)

Con 337.75 ± 33.16 a 21.68 ± 2.93a 24.34 ± 2.21a 96.32 ± 14.78a

E.A.50 337.37 ± 33.76 a 20.19 ± 1.09a 23.60 ± 3.20a 96.60 ± 11.00a

BUS 256.87 ± 36.87 b 36.98 ± 1.28b 40.58 ± 4.68b 42.73 ± 9.30b

BUS+ E.A.10 305.85 ± 50.45 ab 29.04 ± 5.89c 33.08 ± 3.89b 60.69 ± 3.92bc

BUS+ E.A.50 323.25 ± 34.66 a 23.80 ± 1.78ac 25.46 ± 3.79a 76.99 ± 11.16ac
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increased in the BUS+E.A.50 compared to the BUS 
group (P = 0.009) (Fig. 2).

Effects of ellagic acid on the mRNA expression levels 
of Bcl‑2 and caspase‑ 9 in busulfan‑induced relative 
sterility in rats
Gene expression of Bcl-2 was significantly decreased in 
the BUS group than in the control rats (P = 0.004). Bcl-2 

gene expression was significantly increased in the BUS+ 
E.A.50 group compared to the BUS group (P = 0.006). 
However, Bcl-2 expression in the rats that received BUS 
+ EA.50 was similar to that in the control rats (p > 0.05). 
Moreover, gene expression of Caspase-9 level was signifi-
cantly increased in the BUS group than in the control and 
EA.50 groups (P = 0.002). Also, caspase-9 expression in 

Fig. 2  Comparison of TAC (A), MDA (B), catalase (C), and GPX (D) levels in the experimental groups. The results are presented as mean ± SD. 
According to the post-hoc Tukey test which was used for intergroup comparisons, groups with the same superscripts (a, b, and ab.) are not 
significantly different at α = 0.05 (p ≥ 0.05). However, dissimilar letters indicate a significant difference (p < 0.05)
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the BUS+ E.A.50 group was similar to the control groups 
1 and 2 (p < 0.05) (Fig. 3).

Effects of ellagic acid on stereological parameters 
in busulfan‑induced relative sterility in rats
The weight and volume of testis
Testicular weight and volume in the BUS group were 
decreased by about 58.2 and 56.4%, respectively, 
compared to the control group (p  < 0.001). Testicu-
lar weight and volume in BUS+E.A50 was 39.94 and 
36.83%, respectively, higher than the BUS (p ≤ 0.001). 
No significant difference in the testicular weight and 
volume between the BUS and BUS+E.A.10 groups. 
The results indicated that testicular weight and vol-
ume in the BUS+E.A.50 group were 28.59% and 23.91, 
respectively, higher than in the BUS+E.A.10 group 
(p = 0.007, p = 0.035). However, testicular weight and 
volume in the BUS rats treated with E.A.50 were lower 
than those in the control group (p < 0.001) (Fig. 4).

Seminiferous tubule, germinal epithelium, and interstitial 
tissue volume
The results showed that in comparison to the control 
group, the volume of the seminiferous tubule, germinal epi-
thelium, and interstitial tissue was reduced by 55.05, 72.41, 
and 67.80% in the BUS group, respectively (p < 0.001). Also, 
these parameters in the BUS+E.A.50 group were higher 
about 56.22%, 1.6 fold, and 1.3 fold, respectively, compared 
with the BUS group (p < 0.001, p < 0.001, p = 0.020). There 
is a significant increase in the germinal epithelium vol-
ume of the rats in the BUS+E.A.10 group compared with 
the BUS group (p = 0.006). In addition, the volume of the 
seminiferous tubule and the germinal epithelium volume 
in the BUS + E.A.50 rats were not within the range of the 
control group, showing a significant reduction (p <  0.001, 
p = 0.004) (Figs. 4, 5).

The sexual lineage cell number
There was a significant decrease in the number of sper-
matogonia (84.64%), spermatocyte (85.95%), round 

Fig. 3  The effect of treatment with ellagic acid on mRNA expression. A Levels of Bcl-2, and (B) Caspase-9. Data are presented as mean ± SD. 
According to the post-hoc Tukey test which was used for intergroup comparisons, groups with the same superscripts (a, b, and ab.) are not 
significantly different at α = 0.05 (p ≥ 0.05). However, dissimilar letters indicate a significant difference (p < 0.05)

(See figure on next page.)
Fig. 4  Evaluation of the body weight and the stereological parameters of the testis after 48 days of treatment. The column graph of the body 
weight (A), testis weight (B), the volumes of the testicle (C), seminiferous tubules (D), the Germinal epithelium (E) and interstitial tissue (F), and the 
number of spermatogonia (G), spermatocytes (H), round spermatids (I), elongated spermatids (J), Sertoli (K) and Leydig (L) in the experimental 
groups. Data are presented as mean ± SD. a, b, c, d, ab, ac, and bc. According to the post-hoc Tukey test used for intergroup comparisons, groups 
with the same superscripts are not significantly different at α = 0.05 (p ≥ 0.05). However, dissimilar letters indicate a significant difference (p < 0.05)
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Fig. 4  (See legend on previous page.)
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spermatid (92.69%), elongated spermatid (92.93%), Ser-
toli cells (75.18%), and Leydig cells (75.14%) in the BUS 
group compared to the control group. Busulfan-treated 
rats which received ellagic acid 10 and 50 mg/kg showed 
a significant increase in the number of spermatogonia 
(3, 4.5 fold), round spermatid (3, 5.7 fold), and elongated 
spermatid cells (3, 6 fold) (p <  0.01), compared to the 

BUS-treated rats. In addition, in the BUS rats, the num-
ber of spermatocytes, Sertoli, and Leydig cells treated 
with E.A.50 was significantly higher compared to the 
BUS groups (5.5 fold, 1.8 fold, and1.7 fold, respectively, 
p ≤ 0.001) (Fig. 4).

During the study, we did not find any side effects of 
ellagic acid in the rats. Also, there was no significant 

Fig. 5  Photomicrograph of the histology of the testicles in different groups. A1, A2, A3 the control rats with normal structure seminiferous tubules, 
interstitial tissue, and the number of sexual linage cells. B1, B2, B3 the healthy group (E.A 50), which received 50 mg/kg ellagic acid with normal 
testis histopathological features. C1, C2, C3 the busulfan group: the seminiferous tubules appeared atrophic, the germinal epithelium height was 
destroyed, and many testicular cells were lost. D1, D2, D3 azoospermia rats treated with ellagic acid 10 mg/kg showed fewer pathological changes 
and improved testis architecture. E1, E2, E3 the sexual cell population significantly ameliorated in the rats treated with ellagic acid 50 mg/kg 
compared to those that received busulfan. A-E Trichrome Masson staining with magnification at × 40, × 100, × 400
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change in the body weight, LH, FSH, testosterone, 
TAC, MDA, catalase, GPX, Bcl-2, and Caspase-9 gene 
expression, testicular weight and volume, seminiferous 
tubule volume, germinal epithelium volume, interstitial 
tissue volume, and the number of spermatogonia, sper-
matocyte, round spermatid, elongated spermatid, Ser-
toli cells and Leydig cells in E. A50, as compared to the 
control group.

In summary, testis sections of the control and E.A.50 
groups did not show any histopathological changes, and 
the testis architecture was normal. Some irregularity 
and shrinkage in the seminiferous tubules outline were 
revealed in the testicles of the busulfan-exposed rats. 
There was some degree of degeneration and apopto-
sis in the sexual lineage cells in the BUS group. In this 
group, the basement membrane and germinal epithe-
lium were thickened and irregular, respectively; inter-
stitial cells of Leydig had scanty cytoplasm with deeply 
stained vesicular nuclei. The testis of the busulfan rats 
treated with 10 mg/kg of ellagic acid showed little path-
ologic changes compared to the BUS group. However, 
fewer pathological changes and disruptions in the tes-
ticular architecture were observed in groups treated 
with ellagic acid 50 mg/kg (Fig. 5).

Effects of ellagic acid on the sperm count, morphology, 
and motility in busulfan‑induced relative sterility in rats
There was a significant decrease in the number of 
sperms (89.95%) and sperm progressive motility in the 
BUS group compared to the control group (p <  0.001), 
(Table  3). Also, there was no significant difference in 
the sperm count and sperm motility between the busul-
fan and the ellagic acid 10 groups (p < 0.001). Busulfan-
treated rats which had received ellagic acid 50 mg/kg 
indicated a significant increase in the number of sperm 
(~ 3.7 fold) and sperm progressive motility (p <  0.001), 
compared to the BUS-treated rats. (Table  3). A signifi-
cant increase in the percentage of abnormal morphol-
ogy sperm was observed in the BUS group compared 
to the control group (P < 0.001). On the other hand, the 

percentage of abnormal morphology sperm was signifi-
cantly decreased in the BUS+ E.A.10 and BUS+ E.A.50 
groups compared to the BUS group (P <  0.001). There 
was a significant difference in the percentage of abnormal 
sperm between the BUS+ E.A.10 and the BUS+ E.A.50 
recipient groups (Table 3).

Discussion
The results of the present study showed that busulfan 
significantly reduced testosterone, decreased the anti-
oxidant parameters, reduced the testicular function (e.g. 
decreased germinal epithelium volume, seminiferous 
tubules volume, interstitial tissue volume, sexual lineage 
cells), and induced testicular cell apoptosis (e.g. reduced 
gene expression of Bcl-2 and significantly increased the 
plasma MDA level and gene expression of caspase-9). 
Therefore, these findings demonstrate the possibility 
of the relative sterility induction and death of germline 
cells after busulfan administration. It has been reported 
that busulfan contains 2 functional groups of sulfonated 
methane which can alkylate DNA on N7 and O6 of gua-
nine, and N3 of adenine, forming intra-strand crosslinks 
at 50 -GA-30 and, to a lesser extent, at 50-GG-30. There-
fore, DNA cross-linking, DNA–protein crosslinking, and 
single-strand breaks (SSBs) lead to the blockage of DNA 
replication and transcription, and inhibition of cell prolif-
eration and differentiation [55].

Higher expression of p53 in response to DNA damage 
caused by busulfan [56] upregulates the adaptor protein, 
ASK (activator of S-phase kinase), which activates the 
expression of apoptosis target genes, such as Bax, Bid, 
and PUMA (p53 upregulated the modulator of apoptosis) 
[57]. These genes enhanced permeability and release of 
cytochrome C, thereby inducing apoptosis [58].

Moreover, Fas, induced by busulfan in the sper-
matogenic cells combines with procaspase-8 to form 
the death-inducing signaling complex (DISC) which 
activates caspase-8 [55]. Caspase 3 and caspase-7 lead 
to DNA cleavage and cell apoptosis by subsequently 
activated cleaving of the DNA repair enzyme, PARP 

Table 3  Sperm count, morphology, and motility of the sperm in the experimental groups

a , b, c, and d: According to the post-hoc Tukey test which was used for intergroup comparisons, groups with the same superscripts are not significantly different at α = 
0.05 (p ≥ 0.05). However, dissimilar letters indicate a significant difference (p < 0.05)

Group Sperm count (×106) Abnormal morphology % Sperm motility

Progressive motility Immotile

Con 13.04 ± 1.08 a 4.40 ± 2.30a 81.40 ± 4.93a 18.60 ± 4.93a

E.A.50 14.10 ± 1.52 a 3.24 ± 1.62a 85.20 ± 2.86a 14.80 ± 2.86a

BUS 1.31 ± 0.43 b 75.80 ± 8.89b 1.20 ± 0.45b 98.80 ± 0.45b

BUS+ E.A.10 2.14 ± 0.71 b 57.40 ± 5.77d 4.80 ± 1.64b 95.20 ± 1.64b

BUS+ E.A.50 6.22 ± 1.63 c 39.60 ± 4.09c 44.80 ± 3.56c 55.20 ± 3.56c
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(poly (ADP-ribose) polymerase), and increasing Ca2+/
Mg2+-dependent endonuclease activity [55, 59], which 
is consistent with the findings of Hakemi et al. (2019), 
Dehghani et al. (2013) and Olfati’s et al.’s (2020) studies 
[60–62].

These findings confirmed the previous reports that 
showed toxic effects of busulfan in the rat testis, includ-
ing changes in the count, morphology, motility of the 
sperm, and spermatogenesis [60, 61, 63]. In the present 
study, sperm motility and sperm count showed a sig-
nificant decrease. On the other hand, sperm abnormality 
was higher in the busulfan-exposed rats. The ROS pro-
duced by busulfan can attack and damage bio-molecules 
such as DNA and lipids. The plasma membrane of the 
sperm has a great content of polyunsaturated fatty acids, 
so sperms are highly susceptible to oxidative stress. The 
effects of ROS produced by busulfan are disturbing the 
sperm membrane tail fluidity and reducing the sperm 
motility because of polyunsaturated fatty acids in the 
tail membrane of the sperm cell [64] which is similar to 
the present study results. Also, previous studies showed 
that the length of the sperm flagella was shortened in the 
rats that received busulfan, leading to decreased sperm 
motility [60, 61].

However, our results indicate that administration of 
50 mg/kg of ellagic acid could improve the secretion 
of the sexual hormones, antioxidant and stereological 
parameters, and apoptotic gene expression changes in 
the rats with relative sterility. Moreover, similar to the 
study by Hosseini Ahar et  al., we showed that the use 
of busulfan could reduce the body weight and testicular 
weight in male rats [65]. A study found that Ellagic acid 
ameliorated the body and testis weights of the animals. 
It has been reported that Ellagic acid at a 50 mg/kg dose 
has a protective effect [66], which is similar to the pre-
sent study results. Moreover, it is in agreement with the 
report showing that cisplatin-induced decrease in the 
deteriorated histopathologic findings of the testis was 
partially ameliorated by ellagic acid treatment [46].

In the present study, ellagic acid also reversed the 
hypergondotropic-hypogonadism induced in the busul-
fan-treated rats, demonstrated by decreasing FSH and 
LH levels. It seems that improving the testicular func-
tion and structure induced by Ellagic acid could increase 
the testosterone secretion and seminiferous tubules vol-
ume resulting in lowering the LH and FSH secretion, 
respectively [67]. It has been shown that busulfan causes 
changes in the gonadotropin levels due to its destruc-
tive effects on the testicular tissue. In other words, it 
refers to the feedback effect on gonadotropin secretion 
in response to the gonadal damage [68, 69] that leads to 
increased FSH and LH levels [67].

Our major findings showed that ellagic acid potentially 
augmented the antioxidant enzymes such as catalase and 
ameliorated the MDA level. Ellagic acid is a natural phe-
nol compound with a polyphenolic structure that has a 
DPPH-free radical scavenging activity and inhibits lipid 
peroxide production [70]. The cryoprotective and anti-
oxidative properties of ellagic acid have been previously 
reported in the reduction of the lipid peroxidation and 
increment of the total glutathione (tGSH) levels in rats 
[71]. Other studies also reported the anti-oxidative prop-
erties of ellagic acid against oxidative stress [72].

Chemotherapy drugs can induce apoptosis in the germ 
cells of the testicular tissue [73]. In this study, the admin-
istration of ellagic acid ameliorated the apoptotic con-
dition induced by busulfan. It is in agreement with the 
report that cisplatin-induced decrease in the germinal 
cell layer thickness and the deteriorated histopathologic 
findings of testis were partially ameliorated by ellagic acid 
treatment [46]. Ellagic acid has potential anti-apoptosis 
and anti-inflammatory effects [74]. These results are in 
the same line as those of Çeribasi et al., who reported the 
effects of ellagic acid on adriamycin-induced high lipid 
peroxidation levels and apoptosis in rats [71]. Bcl-2 is 
a key factor in the inhibition of apoptosis and its over-
expression can effectively prevent the apoptosis induced 
by hydrogen peroxide, free radicals, and microbial con-
tamination [74]. In this view, several studies have shown 
that oxidative DNA damage induced by the free radical 
attack can induce apoptosis [75, 76]. Yu et al. also dem-
onstrated that ellagic acid suppressed apoptosis through 
its antioxidant effects [77]. In line with these findings, 
our results demonstrated that ellagic acid improved the 
abnormal gene expression level of Bcl-2 and caspase-9.

In the present study, the effect of ellagic acid adminis-
tration on spermatogenesis was investigated. Administra-
tion of ellagic acid for 48 days reduced the adverse effects 
of busulfan on spermatogenesis. Therefore, it seems that 
the improvement in spermatogenesis is due to the anti-
oxidant activity of Ellagic acid. The study carried out by 
Motlag et al. showed that ellagic acid could prevent the 
reduction of spermatogonia, Leydig and Sertoli cells as 
well as the diameter of spermatozoa tubules in the tes-
ticular tissue of the rats exposed to cadmium chloride 
[78], which is similar to our results. Additionally, in the 
present study, treatment with ellagic acid significantly 
increased spermatogenic lineage which leads to a signifi-
cant increase in the thickness of the seminiferous tubule 
epithelium and diameter. Utomo et al. also reported that 
anthocyanin had a key role in ameliorating the oxidative 
stress that leads to maintaining the normal spermato-
genesis and following preserve the spermatogenic cells 
[79]. Hence, enhanced epithelium thickness is related 
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to increased numbers of Sertoli and spermatogenic cells 
[79], which is similar to our results.

Previous studies showed that Ellagic acid at doses of 10, 
25, and 50 mg/kg was found to be effective in preventing 
sperm abnormalities in a dose-dependent manner [66]. 
Even though only partial protection was noted at lower 
doses, a 50 mg/kg dose of ellagic acid produced complete 
normalization of the studied parameters. The mecha-
nism involved in the protective effect of ellagic acid 
against sodium busulfan-induced reproductive toxicity is 
unknown. Busulfan can disrupt the cellular mechanisms 
in several ways which can cause toxicity. It is going to 
induce radical formation and lipid peroxidation, which 
are chemical mechanisms capable of disrupting the struc-
ture and performance of the testis. The antioxidant and 
radical scavenging properties of ellagic acid may play a 
crucial role in preventing the toxic effects of the medicine 
[66]. Busulfan has been shown to possess an apoptosis-
promoting effect on the rat testis by increasing caspase3 
activity [62]. The compounds that have anti-apoptotic 
properties like ellagic acid could also be beneficial against 
gonadotoxins [80]. Future studies are required to explore 
the precise protective mechanism of ellagic acid. It is sug-
gested that special observation tests, covering deoxynu-
cleotidyl transferase dUTP Nick-End-Labeling (TUNEL) 
and BAX/Bcl-2 immunoblotting are required to con-
firm the occurrence of apoptosis in the testis tissue. That 
could be a related limitation that can be considered in 
future studies. It seems that ellagic acid inserts its posi-
tive role in preserving spermatogenesis through its anti-
oxidant characteristics [81]. So clinical trials should be 
performed to clarify the exact mechanism of ellagic acid 
in humans and assess its possible improving effects as a 
complementary medicine for preventing infertility in 
busulfan-treated patients.

Conclusion
The results demonstrated that the consumption of 
ellagic acid may have beneficial effects on the antioxi-
dant defense system, sexual hormones abnormality, and 
testicular tissue function in busulfan-induced sterility 
in rats.
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