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Abstract

Background: Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities
have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived
compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus,
are appropriate in the management of complex diseases, especially cancers. However, methodological limitations
impede attempts to catalogue targeted processes and infer systemic mechanisms of action. While most of the
current understanding of these compounds is based on reductive methods, it is increasingly becoming clear that
holistic techniques, leveraging current improvements in omic data collection and bioinformatics methods, are
better suited for elucidating their systemic effects. Thus, we developed and implemented an integrative systems
biology pipeline to study these compounds and reveal their mechanism of actions on breast cancer cell lines.

Methods: Transcriptome data from compound-treated breast cancer cell lines, representing triple negative (TN),
luminal A (ER+) and HER2+ tumour types, were mapped on human protein interactome to construct targeted
subnetworks. The subnetworks were analysed for enriched oncogenic signalling pathways. Pathway redundancy
was reduced by constructing pathway-pathway interaction networks, and the sets of overlapping genes were
subsequently used to infer pathway crosstalk. The resulting filtered pathways were mapped on oncogenesis
processes to evaluate their anti-carcinogenic effectiveness, and thus putative mechanisms of action.

Results: The signalling pathways regulated by Actein, Withaferin A, Indole-3-Carbinol and Compound Kushen,
which are extensively researched compounds, were shown to be projected on a set of oncogenesis processes at
the transcriptomic level in different breast cancer subtypes. The enrichment of well-known tumour driving genes
indicate that these compounds indirectly dysregulate cancer driving pathways in the subnetworks.
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Conclusion: The proposed framework infers the mechanisms of action of potential drug candidates from their
enriched protein interaction subnetworks and oncogenic signalling pathways. It also provides a systematic
approach for evaluating such compounds in polygenic complex diseases. In addition, the plant-based compounds
used here show poly-pharmacologic mechanism of action by targeting subnetworks enriched with cancer driving
genes. This network perspective supports the need for a systemic drug-target evaluation for lead compounds prior
to efficacy experiments.

Keywords: Systems pharmacology, Transcriptomics, Plant-based drugs, Breast cancer, Oncogenic signalling
pathways

Background
While reductionism-based approaches generated most of
the drugs and drug targets known today, drug-human
interactions are rather complex and the mechanism of
action of most pharmacologically effective drugs results
from the perturbation of cellular networks [1]. Thus, a
phenotypic change following a drug treatment is the re-
sult of multiple dysregulation cascades covering various
biomolecular interactions, which can be traced using the
omics framework [1, 2]. Within this framework, several
studies have utilized transcriptomic data to generate
novel hypotheses regarding the mechanism of drug ac-
tions from drug-driven transcriptome perturbations in
various diseases. However, new perspectives on the de-
velopment and use of computational frameworks are
needed in order to translate information generated from
such data into a clear mechanism of action for drugs in
the context of systems biology [2].
Most cancers are driven by multiple genetic mutations

and epigenetic dysregulations [3, 4] interconnected by
different molecular players. Breast cancer is the most
prevalent form of cancer in women [5]. Distinct tumour
subtypes have been defined for this cancer, and inter/
intra-group subtle genetic variations are known to exist
[6]. Owing to the understanding of the existence of
somatic gene mutations that aggregate in a few signal-
ling and regulatory pathways [7], a number of small
molecule targeted therapies have been developed for
breast cancer in the last decade. However, treatment
success rates above 40% are yet to be recorded [5]. A
plausible explanation to this is the inherent growth-
promoting oncogenic signalling pathways that crosstalk
with other activating pathways thereby making it diffi-
cult to therapeutically stop tumour growth. Unfortu-
nately, most of the currently available drugs and their
evaluation methods are based on their ability to inhibit
a single gene target in these pathways, which is insuffi-
cient in breast cancer and other polygenic diseases
since these diseases often harbour multiple gene muta-
tions. This explicitly points to the need for a multi-
targeted systemic therapeutic approach, as well as a sys-
tematic framework for the evaluation of candidate
drugs.

Existing methods for drug discovery and drug target
identification are highly efficient in elucidating the
mechanism of action of anti-microbial drugs. However,
studies have consistently demonstrated that this simple
framework is inefficient in addressing drug action in
complex and multi-factorial disease systems. In such sys-
tems, limiting drug research to targeting single disease
biomarkers is one of the main causes of drug failures in
clinical trials [1, 2, 8]. Drug induced reprogramming of
cellular responses is directed through metabolic reac-
tions, which are regulated by signalling pathways enor-
mously enriched in protein-protein interactions. Thus,
studying drug effects on cellular pathways provides a
holistic approach for the identification of molecular tar-
gets of drug candidates. Given the increased preference
by tumours for only a handful number of such pathways,
a sound anti-carcinogenic effect can thus be deduced by
evaluating their activity upon treatment. A recent study
evaluating oncogenesis related pathways based on gene
profiling in various cancers [9] provides a foundation for
systemically evaluating the therapeutic relevance of
drug-responsive pathways upon treatment in various
tumours. Thus, we postulated that a network and
pathway-based approach would provide an accurate pic-
ture of systemic effects of candidate drugs in complex
polygenic diseases.
Experimental evidences from separate studies on the

use of plant-based drugs in cancer cells have strongly
suggested a multi-targeting therapeutic strategy. In fact,
ancient civilizations relied on plant-based compounds
due to their relatively low systemic toxicities and ability
to simultaneously treat multiple closely-related disease
conditions [10]. Actein, a triterpene glycoside isolated
from Cimicifuga foetida medicinal plant [11], Withaferin
A, a steroidal lactone from Withania sominfera [12]
plant, Compound Kushen Injection, a Chinese herb pre-
pared from Sophora flavescens and Heterosimilax chi-
nensis medicinal plants [13], and indole-3-carbinol, a
plant phytohormone from cruciferous vegetables [14],
are amongst the most widely studied and documented
plant-derived compounds in breast cancer. Justifiably,
current systems biology analyses through differential
gene expression enumerations have confirmed similar
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observations [15–17]. Yet, despite this, no attempt has
been made to integrate transcriptome-level response to
these drugs with molecular interaction networks to sys-
tematically evaluate the mechanism of action of these
compounds. Emboldened by the idea that condition-
specific co-regulated and co-expressed proteins tend to
converge on well-defined biological pathways, we
hypothesised that genes targeted by plant-based com-
pounds exert a pleiotropic effect on multiple oncogenic
pathways that modulate the response to treatment. To
discern the mechanisms reflected by these perturbed
subnetworks, we catalogued all the molecular players in-
volved and used them in enrichment analysis.
Network biology is a holistic approach in systems biol-

ogy to understand biological systems, where biomole-
cules and their binary interactions are projected onto a
graph to depict molecular relationships [18]. Nowadays,
concurrent integration of experimentally-derived omics
data with a priori interaction data is a common ap-
proach in systems biology to obtain context-specific sub-
networks [19]. To this end, a number of computational
tools have been proposed by different groups to map
and construct subnetworks from transcriptome data [20]
and applied to several diseases, including breast cancer
[21], hepatocellular carcinoma [22, 23], liver fibrosis [24]
and neurodegenerative diseases [25, 26]. However, the
use of this powerful concept to systematically detail the
mechanism of action of lead compounds is still underex-
plored as most current studies still often diverge to the
exclusive receptor-ligand binding paradigm to discover
drug targets, thereby limiting the amount of biological
information that can be gained from such compounds.
In this study, we developed a data-centric computational

framework to determine the mechanism of action of plant
derived natural products on breast cancer cell lines. In this
approach, we mapped compound-treated breast cancer
transcriptome data (actein [11], compound kushen injec-
tion (CKI) [13], indole-3-carbinol [14] and Withaferin A
[12]) on protein interactome and constructed the under-
lying subnetworks. We used network topology metrics to
validate the relatedness of these subnetworks with human
breast cancer disease cases. Next, we performed pathway
enrichment analysis to extract enriched signalling path-
ways, which were then used to define the mechanisms of
action of each drug by (i) constructing pathway gene-
similarity interactomes and (ii) mapping these pathways
on carcinogenesis processes from literature sources. Over-
all, we showed that these compounds possess poly-
pharmacologic properties and target oncogenic signalling
pathways, which can be mapped on carcinogenesis pro-
cesses of therapeutic importance. Notably, we found that
multiple compound-perturbed oncogenic signalling path-
ways work together to control same cancer-driving car-
cinogenesis processes.

Methods
The computational analysis steps followed in this study
are summarized in Fig. 1.

Data acquisition
We used a structured query statement to interrogate
and download gene expression datasets for the breast
cancer cell lines treated with withaferin A (GSE53049)
[12], actein (GSE7848) [11], CKI (GSE78512) [13] and
indole-3-carbinol (GSE55897) [14] from the NCBI GEO
repository. We selected these four plant-based com-
pounds among others since the corresponding datasets
had at least 3 control and 3 treatment groups, and there
was a distinct separation between the control and treat-
ment groups (tested using the unsupervised dimension
reduction method, principal component analysis).

Data processing and differential gene expression analysis
The expression datasets included microarray expression
profiles and RNA-seq counts and, therefore, platform
specific protocols were followed. For the microarray de-
rived datasets (withaferin A, actein and indole-3-
carbinol), probeset mapping was performed by choosing
the probe with the maximum average expression value
among multiple probesets of a gene. For RNA-seq data
(CKI), we selected only those genes with above zero
counts in at least two samples in either control or treat-
ment group. Overall, we log2 normalized all the pre-
processed datasets. Subsequently, we used LIMMA [27]
package in R to identify differentially expressed genes
between the treated versus control (untreated) groups.
We used Benjamini-Hochberg p-value correction to con-
trol for false discovery rates (FDR). Fold change and
FDR cut-offs were simultaneously used to select differ-
entially expressed genes.

Active subnetwork scoring and construction using
KeyPathwayMiner
The challenge of discovering most-connected drug spe-
cific subnetworks in the human protein-protein inter-
action network was solved using KeyPathwayMiner
(KPM) [28], one of the tools reported to have a high per-
formance among subnetwork discovery methods [20]. In
this approach, given a priori protein-protein interaction
network (PPIN), we were interested in a maximally con-
nected clique based on a significance score. Hence, we
treat this problem as an optimization problem with two
main constraints: (i) the maximum allowable non-
differentially expressed genes, and (ii) the significance
cut-off. In this work, we used the Cytoscape (v3.7.1)
based KPM (v5.0.1) plugin.
In our analysis, we made a few modifications to the in-

put data and constraints as we describe next. We applied
a uniform fold-change cut-off of 2 and a varied FDR
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cut-off of 5 × 10−3 (for indole-3-carbinol and withaferin
A) or 1 × 10−2 (for actein and CKI) to identify differen-
tially expressed genes. Thus, our approach is strict; with
the intention of reducing the rate of false positives and
retaining only important features. These two cut-offs
were used to assign binary values to all the genes in a
dataset. Specifically, we used ‘1’ to denote differentially
expressed genes based on our criteria, and ‘0’ for other
genes. In the subnetwork construction, significantly
changed and physically interacting proteins are used.
These interconnected proteins essentially denote drug-
targeted cellular pathways. We allowed a maximum of 5
non-differentially expressed genes in each subnetwork
solution, a parameter available in KPM. For the priori
human PPIN, we used BioGRID [29] (release 3.5.173;
25th March, 2019) containing 22,435 proteins and 478,
529 interactions.

Subnetwork analysis and prospective validation of high
centrality genes
Using CytoNCA (v2.1.6) [30] Cytoscape plugin, we ana-
lysed two network topological features to identify the
major genes in the subnetworks: degree (connectivity)
and betweenness centrality. Degree centrality measures
the number of interactions made by a given gene while
betweenness centrality measures the importance of a
given gene in the network by computing the relative
number of shortest paths passing through a given gene
[31].Next, we used the TCGA breast cancer RNA-Seq
data to investigate the prognostic characteristics of the
top 5 (based on high degree and betweenness centrality)
identified genes. Specifically, we used the online tool
KM-Express [32] to determine the effect of the identified

genes on overall survival and their association with sam-
ples from normal, primary and metastatic cases. For the
overall survival, the tool uses the median gene expres-
sion across all samples and a hazard ratio to infer statis-
tical significance based on log-rank p-value and returns
a Kaplan-Meier curve detailing the relationship between
the expression of a given gene and overall survival as
captured in the TCGA [33] clinical data. A p-value cut-
off of 0.05 was used in this study.

Pathway enrichment analysis
We used enrichR [34] package in R to perform pathway
enrichment analysis for the respective subnetwork nodes
(genes). It uses pathway definitions from Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) [35], WikiPath-
way [36], Reactome [37] and Gene Ontology Biological
Process (GO-BP) [38] databases, among others. We lim-
ited our results to the enriched pathways with an FDR
cut-off of 0.05 and containing the terms: ‘signal’, ‘apop-
tosis’, and ‘cell cycle’. Also, those pathways with less than
3 associated genes were removed at this step.

Construction of pathway-pathway interaction network
Oncogenic signalling pathways do not function in isola-
tion but are known to crosstalk with each other while
redirecting cellular processes. Construction of pathway
interaction networks has been previously applied to visu-
ally elaborate the pathway-pathway interrelationships
and infer associated biological phenomenon [39, 40]. On
the other hand, since pathway enrichment from enrichR
was based on multiple pathway databases, redundant
pathways were inevitable in the enrichment results.
Therefore, pathway-pathway similarity can also be used

Fig. 1 Computational analysis workflow applied in this study. The approach is centred on three main analysis sections: data mining, subnetwork
discovery and pathway inference. PCA: Principal component analysis, FDR: False discovery rate, FC: Fold change, KPM: KeyPathwayMiner, PPIN:
Protein-protein interaction network
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to identify redundant pathways. One approach to com-
putationally enumerate such relationships is to evaluate
the degree of pathway-pathway overlap based on gene
similarities in any given two pathways. We used the Jac-
card index, which is a measure of the similarity between
a pair of sets. Here, given two pathways, Pi and Pj, with
enriched gene sets, Gi and Gj, we computed the Jaccard
index (J) using the formula below:

J Pi; P j
� � ¼ Gi∩Gj

�� ��

Gi∪Gj

�� �� ð1Þ

This evaluates to the number of genes common in the
two pathways divided by the total number of genes in
both pathways without repeats. Hence, Jaccard index
takes values between 0 and 1, and, using this metric, the
proportional similarity between two pathways can be de-
duced. Here, we defined two pathways to be either in
crosstalk or similar based on their Jaccard scores. We re-
lied on a cut-off of 0.60 and 0.25 to infer pathway redun-
dancy and pathway crosstalk respectively. Since we used
multiple pathway databases (KEGG [35], GO-BP [38],
WikiPathways [36] and Reactome [37] pathway defini-
tions) in our analysis, which increased the possibility of
pathway redundancies, this approach allowed us to
prioritize a family representative for redundant path-
ways, effectively eliminating sub-pathways originating
from the same pathway database. To graphically illus-
trate the outcome of the Jaccard analysis and visually in-
spect the pathways for prioritization, we used the igraph
R package [41] to construct pathway-pathway interaction
networks as we describe later. The pathway definitions
were used as the network nodes while a cut-off of 0.25
was used to insert an edge between any pathways with
at least 25% common genes. Furthermore, we used
greedy optimization algorithm in igraph to define clus-
ters in a pathway-pathway interaction network.

Inference of targeted oncogenic signalling pathways
Using the pathway-pathway interaction networks, we ap-
plied a two-tier approach to infer biological significance.
First, we relied on the 10 canonical oncogenic signalling
pathways from the comprehensive pathway analysis by
the TCGA Pan-Cancer Consortia [9], which are cell
cycle, Hippo, Myc, Notch, NRF2, PI-3-Kinase/Akt, RTK-
RaS-MAPK, TGF-β p53 and Wnt/ β-catenin signalling
pathways. Among the terms identified in our enrichment
analysis, we selected the terms that were semantically re-
lated to the aforementioned canonical pathways as drug-
targeted signalling pathways. Subsequently, we grouped
such terms into three broad clusters depicting the main
cancer pathophysiologic processes: (i) cell cycle, prolifer-
ation and apoptosis, (ii) cell metastasis and invasion, and
(iii) angiogenesis [42].

Results
Construction of drug responsive protein interaction
subnetworks from transcriptome data
Breast cancer is molecularly classified into three main
subtypes: luminal (A and B), triple negative and human
epidermal receptor 2 positive (HER2+); based on hor-
mone receptor (oestrogen receptor (ER) and progester-
one receptor (PR) hormones) and HER2 protein
expression [43]. While the datasets used in this study in-
cluded representative cell lines from the three subtypes,
they differ on the transcriptomic platforms used to col-
lect the data and the drug applied. Nevertheless, we use
these datasets to demonstrate that the approach pro-
posed here captures the systemic drug effects and would
be appropriate for the investigation of the pleiotropic na-
ture of plant derived compounds. We summarise these
datasets in Supplementary Table 1. In general, our data-
sets include luminal A (T47D, MCF-7, ZR751), triple
negative (MDA-MB-231, MDA-MB-157 and MDA-MB-
436) and HER2+ (MDA-MB-453) breast cancer cell lines
treated with at least one of indole-3-carbinol, Withaferin
A, CKI and Actein. As no luminal subtype B was cov-
ered by this study, all subtype A are referred to as ER+
throughout this discussion. The Principal Component
Analysis results showing separate grouping of treatment
and control samples is available as Supplementary Fig. 1.
To identify affected genes, we performed differential
gene expression analysis. We relied on fold change and
FDR scores as cut-offs for significance, which were even-
tually used for data binarization for KPM analysis, as de-
scribed in the Methods section. The number of
differentially expressed genes for each dataset is given in
Supplementary Table 2.
Network mapping and subnetwork scoring approaches

have been extensively used in integrative biology field to
discover active disease- and drug-specific modules in
various experiments [20, 28, 44, 45]. To elucidate the
molecular effects of plant derived compounds in breast
cancer, we constructed the active subnetworks from
transcriptome data using KeyPathwayMiner [44]. Con-
currently, using the same approach and parameters, we
also constructed active subnetworks from the up- and
down-regulated genes separately. The number of pro-
teins and their interactions for all the subnetwork solu-
tions are reported in Table 1.
Overall, we observed a compound- and breast cancer

subtype-specific pattern based on the number of pro-
teins and their interactions. Thus, it is deducible from
these results that the different compounds studied had
substantial differential and specific effects on the activity
of the underlying protein interaction networks in the
disease subtypes. With the differences in the number of
targeted proteins, this deduction reinforces the domin-
ant idea that no two drugs have a similar mechanism of
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action in complex diseases [2, 46]. As expected, the role
of molecular heterogeneity of the different breast cancer
subtypes in drug response can be explicitly delineated
from the sizes of the subnetworks. For instance, under
indole-3-carbinol, in terms of the number of enriched
genes, a relatively higher number was targeted by ER+
than TN, while the reverse was observed under Witha-
ferin A treatment of ER+ and TN cell types (Table 1).
The current drug research regime focuses on specific
targeted therapy (famously defined as ‘magic bullets’) [2,
46]. However, with the increasing acceptance of the
poly-pharmacologic paradigm as an effective approach
in the treatment of complex diseases, our network ana-
lysis results indicate that the analysed compounds target
multiple proteins simultaneously to exert their effects in
a network-centric multi-targeting mechanism. This ob-
servation would be beneficial under disease conditions,
particularly if the cohort of targeted proteins can be
linked to or are known disease drivers.

The drug-specific subnetworks capture key breast cancer
carcinogenesis-related genes as revealed by prospective
prognostic prediction using network topology analysis
An overarching question is whether the genes enriched
in the subnetwork solutions have any significance in

breast cancer prognosis. In therapeutic terms, effective
anti-carcinogenic drug candidates are known to regulate
a niche of known proto-oncogenes in a disease network.
To address this, network centrality measures can be
used to identify topologically important target nodes
(genes) in the subnetwork solutions [47]. In disease net-
works under compound perturbations, such genes are
significantly enriched as a result of the condition (treat-
ment) change. In this study, with the aim to prospect-
ively validate the constructed subnetworks, we used
CytoNCA [30] to extract the top five genes based on
both high betweenness and degree centralities from each
subnetwork. The result from this analysis is reported in
Table 2.
Betweenness and degree centrality scores for all genes

in the subnetworks are given in Supplementary Table 3.
Subsequently, we analysed the top-five genes by using
the KM-Express [32] tool for their association with over-
all survival and disease stages (median expression in nor-
mal, tumour and metastasis states).
In general, we found 11 unique genes from all the sub-

networks. Five of these genes (APP, TRIM25, ELAVL1,
HNRNPL and ESR2) were found to be the most frequent
across all subnetworks (Table 2). Since we had allowed
the parameter K = 5 in KPM-based subnetwork

Table 1 Summary of the topological structure of subnetwork solutions indicating the number of proteins and their interactions in
each dataset studied. The right part gives the subnetwork characteristics when separate subnetworks were constructed for up- and
down-regulated genes

Compounds Cell Lines Genes Interactions Genes Interactions

Actein MDA-MB-453 829 3858 Up 327 687

Down 455 2166

CKI MCF-7 1332 9331 Up 933 2838

Down 304 1676

I3C MCF-7 1974 10,684 Up 453 1162

Down 1399 6816

T47D 1681 7050 Up 620 1324

Down 959 3254

ZR751 1403 5457 Up 545 1105

Down 961 6323

MDA-MB-231 93 126 Up 17 17

Down 86 111

MDA-MB-157 86 110 Up 18 19

Down 75 106

MDA-MB-436 541 1275 Up 98 120

Down 402 932

WA MCF-7 333 941 Up 117 353

Down 202 564

MDA-MB-231 998 3277 Up 456 1011

Down 480 1208

CKI Compound kushen injection, I3C Indole-3-carbinol and WA Withaferin A
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construction step, the top five genes mainly consisted of
genes with non-significant differential expression but
with the highest degree and betweenness centrality
scores. Survival analysis found APP, TRIM25 and ELAV
L1 to have significant associations with overall survival
(log-rank p-value <0.05) in breast cancer. Overexpres-
sion of APP and TRIM25 in cancer patients was associ-
ated with low overall survival and the reverse was true
for ELAVL1 (Fig. 2 a-c). In the literature, APP is a well-
established cancer biomarker, a target of ADAM10, and
has been strongly linked with breast cancer growth, me-
tastasis and migration [48]. A comprehensive study iden-
tified TRIM25 as a key gene in regulating TN breast
cancer metastasis [49]. ELAVL1 codes for an RNA bind-
ing protein controlling multiple facets of carcinogenesis,
and literature reports show its over-expression to be as-
sociated with adverse-event free tumours [50]. Indeed,
our current finding concurs that its low expression in
cancer patients correlates with low overall survival and
that over-expression may increase the patient overall
survival. On the other hand, HNRNPL and ESR2, which
have been reported to be associated with breast cancer
elsewhere [51], were not significantly associated with pa-
tient survival at the median gene expression cut-off.
However, further interrogation revealed their significant
association with overall survival at 75% vs 25% (high vs
low) and 75% gene expression cut-offs respectively (Fig. 2
d-e). From Supplementary Fig. 2 a-e, high expression
levels of TRIM25 is associated with metastatic tumours
while that of ELAVL1 is associated with primary tumours.
The expression of APP, on the other hand, decreases in
both primary and metastatic tumours., We found TRIM25
to be indirectly targeted by all the compounds, except in
MDA-MB-231 under indole-3-carbinol (Fig. 2). Also,
under indole-3-carbinol treatment, APP was not present
amongst the top-five genes in MDA-MB-231 and MDA-
MB-157, indicating a transcriptome deviation from the
other TN-specific cell line, MDA-MB-436.
These findings suggest that these plant-derived com-

pounds target gene subnetworks driven by well-
established oncogenes. Importantly, the plant-based
compounds exert their effects not directly through the

central oncogenes but by perturbing a high number of
their first neighbours. The observed protein interaction
network-disease-prognosis consistency suggests that the
applied method is able to capture biologically relevant
protein networks and shows the potentials of the com-
pounds used in this study to target disease-relevant net-
works in cancer, ostensibly permitting the constructed
subnetworks for use in hypothesis generation for a com-
pound’s mechanism of action.

Actein, indole-3-carbinol, CKI and Withaferin A target
multiple oncogenic signalling pathways which coordinate
to influence cellular processes
In this section, we aimed to comprehensively catalogue
drug targeted oncogenic signalling pathways and their
corresponding oncogenesis processes. In summary, the
following steps were followed: (i) pathway enrichment
was applied to all the genes in a subnetwork, (ii) only
oncogenic signalling pathways were retained, (iii) to
identify and filter out redundant pathways coming from
different databases, pathway-pathway correlation net-
works were constructed (iv) the final list of pathways
was mapped on three major oncology related processes
based on their semantic similarity to the 10 canonical
oncogenic signalling pathways [9] (see Methods section).
As described in the methods section, we performed

pathway enrichment analysis using the genes in each iden-
tified subnetwork. An important factor in this systemic
approach is the interconnectivity of the proteins used in
pathway enrichment analysis. Thus, it is obvious that the
enriched pathways are connected due to the shared
targeted-network proteins. To illustrate this, first we elim-
inated all those pathways which were unrelated to cancer.
Supplementary Table 4 and Supplementary Table 5 report
the enriched pathways from this analysis. Then we con-
structed unweighted pathway-pathway interaction net-
works based on common proteins shared between
different pathways. We relied on a Jaccard similarity index
of at least 25% to denote pathway crosstalk (through inter-
secting genes) and represented this by placing an edge be-
tween them in the network. Figure 3 a-b and
Supplementary Fig. 3 a-g show the networks of various

Table 2 Top 5 genes from the subnetworks of each dataset based on their betweenness and degree centrality scores, depicting
compound-specific signature genes in each cell line

ACT (MDA-MB-453) CKI
(MCF-7)

I3C
(MCF-7)

I3C
(MDA-MB-157)

I3C
(MDA-MB-231)

I3C
(MDA-MB-436)

I3C
(T47D)

I3C
(ZR751)

WA
(MCF-7)

WA
(MDA-MB-231)

APP ELAVL1 TRIM25 HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL APP TRIM25

TRIM25 HNRNPL ELAVL1 ESR2 ELAVL1 TRIM25 TRIM25 TRIM25 TRIM25 ELAVL1

ELAVL1 APP ESR2 TRIM25 ESR2 ESR2 ELAVL1 ELAVL1 ESR2 APP

ESR2 TRIM25 HNRNPL CUL3 CUL3 ELAVL1 ESR2 APP ELAVL1 RNF4

HNRNPL RNF4 APP BAG3 CDH1 APP APP RNF4 HNRNPL NXF1

The genes are labelled using their respective universal identifiers. ACT Actein, CKI Compound kushen injection, I3C Indole-3-carbinol, and WA Withaferin A.
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Fig. 2 The most frequent central genes in the compound-targeted subnetworks show associations with well-defined breast cancer disease
endpoints. a-e) Overall survival plots showing bifurcate (APP, ELAVL1 and TRIM25), 75% vs 25% (HNRNPL) and 75% (ESR2) gene expression in
relation to patient overall survival across TCGA breast cancer datasets. ‘High’ and ‘Low’ denotes patient cohorts with high median gene
expression over the follow-up period. Logrank (p-value) <0.05 was considered significant
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drugtargeted pathways from the four drugs studied. This
clustering allowed us to (i) prioritise meaningful signalling
pathway terms for mapping on oncogenesis processes thus
reducing redundancy (the pathways with J > 0.60), and (ii)
illustrate pathway-pathway crosstalk (interdependence) in
a drug-targeted network. We reckon that this approach is
much simpler and precise compared to Chen et al. [52]’s
gene overlap index approach for pathway prioritisation.

We observed a characteristic clustering of related
pathway terms across the various enrichment results.
For instance, in the actein treated MDA-MB-453
dataset, we identified 10 pathway clusters out of 21
enriched pathways; only 5 of these (NRF2, Cell cycle,
Apoptosis, Interferon signalling and TGF-beta) were
identified as members of the defined oncogenic sig-
nalling pathways (see Methods). An examination of

Fig. 3 Pathway-pathway interaction networks under Actein (MDA-MB-453 cell line) and Withaferin A (MDA-MB-231 cell line) treatments. The
network nodes represent individual pathways. Pathway-pathway crosstalk (Jaccard Index) ≥0.25
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the various pathway clusters from all the datasets re-
vealed two important features: (i) the clustered path-
ways were either semantically related or from the
same database with similar functions, as in the case
of ‘NRF2’ and ‘Nuclear receptor meta-pathway’ path-
ways in Fig. 3 a (J > 0.60, pathway redundancy), and
(ii) the interacting pathways are well-known to inter-
act in literature acting as sub-pathways through the
activation of the main pathway, as in the case of
‘apoptosis’, ‘TNF’ and ‘IL17’ in Fig. 3 b (pathway
crosstalk), which is expected [53]. The pathway-
pathway interaction networks from the other datasets
are reported in Supplementary Fig. 3 a-g.
Next, to infer biological significance, we applied a

two-tier approach. First, we relied on the predefined
canonical oncogenic signalling pathways (see Methods
section) [9] for the concise terms. Additionally,
though not captured in the TCGA [9] analysis of the
most frequently mutated canonical oncogenic signal-
ling pathways since it is a response mechanism to
foreign system, the role of the immune system signal-
ling as a secondary response mechanism in cancer is
significant and can be attributed to the inhibition/
promotion of tumour initiation and metastasis in ad-
vanced cases. Thus, immune system related pathway
terms were also included in the analysis results based
on the known physiological roles of both the path-
ways and their enriched genes. Subsequently, we used
pathway enrichment analysis results from the up
−/down-regulated subnetworks (Supplementary Table
5) to assign these pathways as either up- or down-
regulated. Eventually, with clear pathway clusters and
only canonical-signalling-pathways relevant non-
redundant terms, we mapped the resulting pathway
terms on the three categories derived from major
oncogenesis processes: (i) cell cycle, proliferation and
apoptosis, (ii) cell metastasis and invasion, and (iii)
angiogenesis. However, given the overlapping roles
different pathways perform in biological systems, deci-
phering the affected processes is not straightforward.
Therefore, to assign a pathway to either of the three
groups, we looked up for the functional role(s) of the
associated genes (both up- and down- regulated) in
UniProtKB [54] database. To deduce the targeted bio-
logical processes, we relied on those genes whose mo-
lecular functions match the biological roles of the
pathways provided in literature. Table 3 details the
results of this grouping. To illustrate this approach,
we provide a detailed description of the grouping as
applied to the actein treated MDA-MB-453 cell line
in Supplementary Table 6 using enrichment results
from Supplementary Table 5 and the pathway-
pathway interaction networks (Fig. 3 a, b and Supple-
mentary Fig. 3a-g).

Discussion
Systems pharmacology has evolved as a data-driven ap-
proach to bridge the gap between the increasing
amounts of compound/drug perturbation data and drug
discovery through systematic evaluations [46, 55]. It
gives new perspectives to drug/compound treated clin-
ical and experimental publicly available omics data
through well-grounded bioinformatics data analysis
pipelines, speeding up the rate of understanding of the
molecular mechanisms of action to identify targets of
drug candidates [1, 2, 56]. In this study, we developed
and implemented a computational analysis framework
that relies on mapping transcriptome data on protein in-
teractome and constructing targeted subnetworks, and
subsequent mapping of enriched pathways in the sub-
networks on carcinogenesis processes (Fig. 1). For poly-
pharmacologic compounds, this approach projects the
cellular behaviour in response to treatment on a physical
interaction network; thereby, simplifying inference of
mechanism of action from omics data. While it would
have been important to include more studies to augment
the results obtained by this approach, most of the avail-
able transcriptome datasets available did not pass the
quality control step. Finally, we showed that the findings
from our approach augments initial studies on the com-
pounds and propose new processes that were not re-
ported in those studies. Below, we discuss the main
findings with literature evidences on the studied
compounds.
Actein has been widely studied in breast cancer due to

its effects on various biological processes in various can-
cers [11, 57–59]. Initial findings by Einbond et al. (2007)
[11] using the same dataset demonstrated a dosage
dependent activation of integrated stress response path-
way, cell survival and apoptosis pathways as the main
mechanisms targeted by the compound. In this study,
cell death and cell cycle roles of TGF-β, PI3K-Akt-
mTOR and NRF2 pathways were up-regulated while
proliferation roles of TGF-β pathway were down-
regulated. Additionally, tumour microenvironment regu-
lation through interferon signalling pathway was down-
regulated (Table 3). Available reports on breast and
other cancers indicate that actein targets cell apoptosis
[58, 60], cell adhesion [59] and migration [59, 60]. This
analysis showed actein to target oncogenic signalling
pathways mainly regulating cell cycle, proliferation and
apoptosis processes in this cell type, which clearly cap-
tures the initial findings [11] and proposes more mecha-
nisms that were not captured by the study.
CKI is an ancient formulation in the Chinese

pharmacopoeia, and mixed results have been reported in
breast cancer [61]. The group by Qu et al. (2016) [13]
showed that cell cycle and other cell growth related
pathways are the main potential targets of CKI. Here, we
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found CKI to down-regulate p53 pathway, which is in
line with a previous observation of p53 independent
apoptotic cell death [13], and up-regulate RTK-RaS-
MAPK (EGFR, p38 and ErbB), PI3K-Akt-mTOR, NRF2
and TGF-beta pathways in MCF-7. These pathways
regulate cell proliferation and apoptosis (p53, RTK-RaS-
MAPK, PI3K-Akt-mTOR and NRF2) and metastasis/in-
vasion (TGF- β). Moreover, CKI also targets angiogen-
esis and tumour microenvironment regulating pathways
through VEGFA/VEGFR2 and cytokine signalling (B cell
receptor, T cell receptor and FC-epsilon signalling) re-
spectively (Supplementary Table 5), which is consistent
with a previous finding [62]. Other reports have shown
that CKI directly regulates cell migration [63]; and apop-
tosis in breast cancer [62]. Cell cycle, proliferation and
apoptosis, metastasis/invasion, and angiogenesis were
proposed here as the potentially targeted carcinogenesis
processes in this cell line, which agrees well with the ini-
tial findings [13] (Table 3).
The therapeutic effectiveness of indole-3-carbinol is

well defined in oestrogen receptor driven cancers [64,
65]. Caruso et al. (2014) [14] showed that I3C mainly
acts by targeting the pro-apoptotic aryl hydrocarbon re-
ceptor mediated by increased oxidative stress in ER+ cell
lines. In ER + cell types, we mapped the pathways on cell
proliferation and apoptosis (Wnt, cell cycle, Notch and
TGF-β) and invasion/metastasis (TGF-β, Wnt and
Notch). Characteristically, TGF-β regulating metastasis/
invasion was down-regulated in T47D and MCF-7 while
its cell death promoting role was up-regulated in T47D
and down-regulated in ZR751 (Table 3 and Supplemen-
tary Table 5). All the three categories of carcinogenesis
processes were targeted (Table 3). The role of indole-3-
carbinol on TN is less studied, however low efficacy in
this subtype has been noted [14]. Accordingly, here no
oncogenic signalling pathway was enriched in the MDA-
MB-157 subnetwork, illustrating an indole-3-carbinol
-specific non-responsive subtype. This tumour subtype
is known to be resistant to most chemotherapeutic inter-
ventions [66]. Nonetheless, more MDA-MB-436 signal-
ling pathways were targeted by indole-3-carbinol than in
MDA-MB-231 subtype (Supplementary Table 5); and
they control carcinogenesis through cell cycle, prolifera-
tion and apoptosis, metastasis/invasion, and angiogenesis
processes (Table 3). In effect, we identified more poten-
tially targeted pathways than reported in the original
work and showed that disease specific pathways are also
targets of the compound in TN subtypes [14].
The characteristic anti-cancer effects of Withaferin A

is well anchored in scientific reports [67–70] and specif-
ically in breast cancer [12, 68, 71, 72]. WA was previ-
ously found to mainly remodel TN metastatic molecular
phenotype to ER+ [12] non-metastatic phenotype. Here,
RTK-RaS-MAPK, TGF-β, NRF2 and p53 oncogenic

signalling pathways were targeted in both TN and ER+.
Tumour subtype specificity on Wnt, Notch, VEGFA-
VEGFR2 and PI3K-Akt-mTOR in TN and cytokines in
ER+ were observed (Table 3). Moreover, cytokine medi-
ated signalling in both cells was also targeted. The up-
regulation of NRF2 pathway genes as observed is con-
sistent with in vivo findings of induced oxidative stress
in the two cell lines [68, 73]. These results illustrated
multi-targeting of several carcinogenesis processes, in-
cluding cell proliferation and death, metastasis/invasion
and angiogenesis (Table 3) in both TN and ER+ associ-
ated with phenotypes reported in in vitro studies [12, 68,
71, 72, 74]. Thus, besides mainly targeting tumour me-
tastasis, we show that WA could potentially target more
cancer specific pathways in both ER+ and TN as shown
in Table 3.
Whereas this work attempts to associate the various

targeted networks with carcinogenesis processes to ex-
plain the mechanism of action of poly-pharmacologic
compounds, a major limitation arises on enumerating
their therapeutic values. For instance, enrichment of a
pathway in either up- or down-regulated subnetworks
may not necessarily be directly translated as activation
or inactivation of the related pathway-defined cellular
process, as the same process may be targets of other co
−/dys-regulated pathways by the same drug. In vitro re-
ports on the activity of the different compounds on cell
lines [11–14] showed agreements with our findings.
However, we suggest that the new processes identified
by this study need further validation studies. To increase
the robustness of this approach, we propose future inte-
gration of more omics data to provide a more precise
picture on the exact mechanism of action of these com-
pounds [75].
Another challenge experienced in this approach is the

un-directionality of protein interactomes. Thus, given
the inherent directionality in signalling pathways, our fu-
ture studies will incorporate directed networks from an
ensemble of databases, by drawing on their comprehen-
siveness to construct all-inclusive interaction networks.
Additionally, given the poly-pharmacologic properties

found here, simulations on the effect of different combina-
tions to determine synergistic and antagonistic combina-
tions and side-effects would provide more information.
Regan-Fendt et al. [76] recently developed a computa-
tional drug combination analysis using transcriptome data
and disease specific root genes for malignant melanoma
and successfully predicted vemurafenib and tretinoin as
synergistic therapeutic combinations. Variants of this ap-
proach, for instance, modelling the active drug subnet-
works using deep learning, could be applied to
systematically predict drug combinations and side-effects
for precision medicine applications in pre-clinical drug re-
search for complex diseases [8, 55].
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Conclusion
Literature evidence from other in vitro studies on both
breast and other cancers were shown to support some of
our predictions on the systemic effects of the studied
compounds. This suggests the method may be valuable
in identifying the systemic molecular effects of pleio-
tropic compounds during drug screening. Additionally,
it may be used to select the appropriate compound
based on targeted pathways or biological processes asso-
ciated with disease. However, more in vitro studies are
needed to validate the predictions in the respective cell
types before wider adoption of this methodology.
Overall, this study generated two main outputs: (i)

proposed a data-driven framework for elucidating the
mechanism of action of pleiotropic natural products
using transcriptome data and protein interactome and
(ii) demonstrated that plant-derived drugs (actein,
indole-3-carbinol, withaferin A and CKI) are capable of
simultaneously regulating multiple carcinogenesis pro-
cesses in breast cancer. Thus, this network-centric
method can extract subtle systemic drug effects on cellu-
lar pathways and provides a better approach to the
abortive exquisite ‘target’ approach in studying poly-
pharmacologic compounds. Although breast cancer
datasets were used to prove the concept, the approach
can also be easily applied to other cancers. We anticipate
that the proposed framework will be instrumental in
accelerating evaluation of poly-pharmacologic com-
pounds for applications in pre-clinical drug efficacy
research for oncology precision medicine and other
complex diseases.
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Additional file 1: Supplementary Fig. 1. Principal component analysis
(PCA) results of transcriptome samples for each dataset illustrating the
distribution of variance in the first two components considered for
sample separation. PC1: principal component 1, PC2: principal
component 2. (a) actein on MDA-MB-453, (b) CKI on MCF-7, (c) Indole-3-
Carbinol on MCF-7, (d) Indole-3-Carbinol on MDA-MB-231, (e) Indole-3-
Carbinol on MDA-MB-436, (f) Indole-3-Carbinol on T47D, (g) Indole-3-
Carbinol on ZR751, (h) Withaferin A on MCF-7 and (i) Withaferin A on
MDA-MB-231.

Additional file 2: Supplementary Fig. 2. Average gene expresion
profiles of most frequent central genes in the compound-targeted sub-
networks based on TCGA datasets. a-e) Box-plots showing gene-
phenotype (primary, normal and metastatic) association.

Additional file 3: Supplementary Fig. 3. Pathway-pathway interaction
networks based on shared enriched genes illustrating functional pathway
cross-talk. a-f: represents networks of pathways targeted by CKI on MCF-7,
I3C on MCF-7, I3C on MDA-MB-436, I3C on T47D, I3C on ZR751 and WA
on MCF-7. CKI: Compound Kushen Injection, I3C: Indole 3-Carbinol, WA:
Withaferin A.

Additional file 4: Supplementary Table 1. Summary of the
transcriptome datasets used and the molecular profiles of the cell lines.
The columns Controls and Treatments list the number of samples in each
case. (HER2+: human epidermal receptor 2 positive, ER+: Oestrogen
receptor positive, TN: triple negative, AC: adenocarcinoma, IDC: invasive
ductal carcinoma, MC: medullary carcinoma, Wt: wild type, Mut: Mutant,
Del: deleted).

Additional file 5: Supplementary Table 2. Summary of the
differential expression analysis results. The number of differentially
expressed genes under the respective plant-derived drugs/compounds
are given in the table. DEG: Differentially expressed genes, FDR: False dis-
covery rate, FC: Fold change.

Additional file 6: Supplementary Table 3. Results of subnetwork
betweenness- and degree centrality analysis.

Additional file 7: Supplementary Table 4. Pathways enriched in
whole subnetworks. FDR < 0.05.

Additional file 8: Supplementary Table 5. Enriched pathways in up-
and down-regulated subnetworks. FDR < 0.05.

Additional file 9: Supplementary Table 6. An example of Actein
targeted oncogenesis processes illustrating the approach used in
grouping the oncogenic signaling pathways into different cancer
pathophysiological processes based on the pathways’ enriched genes.
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