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Abstract

Background: Yigan mingmu oral liquid (YGMM) is a herbal medicine based on a famous Chinese herbal formula
that has been used for sore eyes for more than 400 years. Eye health is closely associated with the liver based on
TCM. This study aimed to investigate the hepatoprotective effect of YGMM against acute liver injury induced by
alcohol in rats.

Methods: Experimental rats were administered with silymarin and YGMM through the gastric gavage during the
entire experiment. Starting from the 11th day, the rats were administered orally with 14 ml/kg Red Star Erguotou
Liquor, a popular brand, at 4 h after the dose of silymarin (100 mg/kg) and YGMM (1, 2.5 and 5 ml/kg in low, middle
and high dosage group, respectively) once a day for 4 weeks except for the rats in the normal group. Biochemical
parameters, including ALT, AST, TB, TG, T-SOD, GSH, and MDA were detected to evaluate the protective effect of
YGMM. Pathological changes were observed through histopathological examination.

Results: Treatment with YGMM exhibited a significant protective effect by reversing the biochemical parameters
(ALT, AST, TB, TG, and GSH) and histopathological changes. Histopathological examination by Oil Red O Staining
Solution showed that lipid droplets were significantly reduced in the silymarin and YGMM groups (p < 0.001) when
compared to alcohol group.

Conclusions: YGMM exhibits a significant hepatoprotective activity against acute liver injury induced by alcohol in
rats.
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Background
Alcoholic liver disease (ALD) has recently become an
important liver disease due to the increasing levels of al-
cohol consumption in the world [1]. The severity of this
disease increases in the time and dose dependent man-
ner with alcohol consumption and ranges initially from
steatosis and steatohepatitis to fibrosis and cirrhosis [2–
4]. However, the exact pathogenic mechanisms of ALD
remain unclear. Previous studies have suggested that
mitochondrial damage, generation of free radicals, and

oxidative stress are important pathogenic events in the
development of ALD [5, 6]. Supportive care and abstin-
ence from alcohol are the only effective treatment
methods. Moreover, some synthetic drugs, including
bicyclol, tiopronin, and bifendate, have been used to alle-
viate the symptoms of ALD [7, 8]. Nevertheless, the def-
inite and practical treatment strategies for ALD are still
ambiguous. Developing traditional Chinese formulas and
natural products with hepatoprotective effects has re-
cently drawn attention [9, 10]. Given their multi-
targeted and less toxic features, many herbal medicines
have been investigated for ALD treatment [11].
Yigan mingmu oral liquid (YGMM) is a herbal medicine

based on a famous Chinese herbal formula composed of 12
crude herbs: Rehmanniae Radix Preparata (Shudihuang),
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Angelicae Sinensis Radix (Danggui), Lycii Fructus (Gou-
qizi), Paeoniae Radix Alba (Baishao), Ophiopogonis Radix
(Maidong), Chrysanthemi Flos (Juhua), Anemones Altaicae
Rhizoma (Jiujiechangpu), Polygonati Odorati Rhizoma
(Yuzhu), Chuanxiong Rhizoma (Chuanxiong), Citri Reticu-
latae Pericarpium (Chenpi), Cassiae Semen (Juemingzi),
and Bupleuri Radix (Chaihu). This formula was approved
by the CFDA as a therapeutic drug for sore eyes, lumbar
debility, dizziness, hypomnesis, and body fatigue.
YGMM is based on Siwu decoction, an ancient formula

first recorded in the secret formulary for traumatology and
fracture taught by immortal in the Tang Dynasty and was
used to treat trauma and extravasated blood. Siwu decoc-
tion was also found in some famous ancient medical books
as treatment for obstetrical and gynecological diseases over
the last hundred years. These books chronologically in-
cluded Prescriptions of Peaceful Benevolent Dispensary in
the Song Dynasty, Medical Formulae Investigations by Wu
Kun in the Ming Dynasty, and Detailed Outline for Bene-
fiting Female by Wu Zhiwang in the Ming Dynasty. Siwu
decoction was initially composed of four Chinese herbals,
namely, Angelicae Sinensis Radix, Chuanxiong Rhizoma,
Paeoniae Radix Alba, and Rehmanniae Radix Preparata. In
addition to the above herbals, Notopterygii Rhizoma et
Radix, Saposhnikoviae Radix, and Angelicae Dahuricae
Radix were incorporated in another famous formula
named as Angelicae Sinensis Tonic Decoction, which was
recorded in Shen Shi Yao Han by Fu Renyu in the Late
Ming Dynasty and is usually used for sore eyes. Through
incessant development and optimization, this formula was
popularized in the Qing Dynasty and is still useful today.
According to TCM, eye health is closely associated with
the liver. Huang Di Nei Jing, one of the most famous an-
cient medical books in China, states that liver-qi is con-
nected with the eyes; hence, the eyes can distinguish five
colors when the liver-qi is unobstructed.
Pharmacological studies have showed that oxidative

stress is an important pathogenesis for ALD [12–15]. Most
of herbs in YGMM possess significant antioxidant activity
[16–21], and some of them have been used for some dis-
eases because of this property [22, 23]. More specifically,
ferulic acid isolated from Angelicae Sinensis Radix and
Chuanxiong Rhizoma possesses antioxidant activity and
protection against alcohol-induced liver injury [24, 25].
Rehmanniae Radix Preparata, Lycii Fructus, and Paeoniae
Radix Alba show antioxidant or anti-inflammatory activity
[26–28]. Chrysanthemi Flos and Bupleuri Radix can also
prevent liver injury [29, 30]. Besides, fat accumulation
mainly results from lipid metabolic disorder, and is com-
monly observed in human and animal with ALD [31–33].
Bupleuri Radix and Polygonati Odorati Rhizoma could
ameliorate fat metabolic disorder [34, 35], Ophiopogon
japonicus and Paeonia moutan could suppress the hepatic
lipid accumulation [36, 37]. Based on the above findings,

we speculatedconjecture that YGMM could has hepato-
protective effects on the alcohol-induced liver injury.
In this study, the protective effects of YGMM on acute

alcohol-induced liver injury in rats were investigated. The
characteristics of liver injury were estimated by AST,
ALT, and histopathological changes. In addition, T-SOD,
GSH, MDA, TB, and TG levels in the hepatic tissues were
detected to identify the possible mechanisms.

Methods
YGMM
YGMM samples were provided by Hebabiz Pharmaceut-
ical (Guangxi, China). In brief, six TCM herbs, including
Angelicae Sinensis Radix, Chrysanthemi Flos, Anemones
Altaicae Rhizoma, Chuanxiong Rhizoma, Citri Reticula-
tae Pericarpium, and Bupleuri Radix, were crushed, from
which the volatile oil was extracted by water distillation,
meanwhile the filtrateI and residues were collected for
further use. The residues and the rest six TCM herbs
were decocted with water, and the decoction was filtered
to obtain filtrate II. FiltrateI was combined with filtrateII,
then concentrated into an ointment. The ointment was
redissolved with ethanol, then the supernatant was con-
centrated after evaporating ethanol into a recovery tank.
The concentrated supernatant was mixed with appropri-
ate amount of water, honey, ethyl paraben and the col-
lected volatile oil to produce YGMM.

Animals
Male Sprague–Dawley rats (200 ± 20 g) were bought
from the Center for Animal Experiment of Wuhan Uni-
versity, Wuhan, China. These experimental rats were
allowed to adapt to feeding conditions for 1 week prior
to the experiments. The feeding conditions were main-
tained at 25 ± 2 °C, 40–70% relative humidity, and 12 h
dark/light cycle. The rats had free access to standard ro-
dent pellet diet and water during the assay period. The
experimental protocol was approved by the Animal Eth-
ics Committee of Wuhan University, Wuhan, China.
Animal assays were conducted according to the guide-
lines of the Committee for the Purpose of Control and
Supervision of Experiments on Animals.

Drug administration
After 1 week adaptation, the rats were assigned to the fol-
lowing six groups (six animals each) based on their body
weight (BW): normal control, alcohol group, Silymarin
group (as the positive control), and YGMM groups. Ac-
cording to preliminary experiments, the following daily
doses were adopted for each treated group: the low,
medium, and high YGMM doses were 1, 2.5, and 5ml/kg
BW, respectively, whereas silymarin dose was 100mg/kg
BW. The experimental process was showed in Fig. 1. In
the beginning, the rats in the YGMM group were given a
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gavage of YGMM in three different doses, whereas those
in the silymarin group were simultaneously fed with sily-
marin (Madaus GmbH, Cologne, Germany) through gas-
tric gavage. The rats in the normal control and alcohol
groups were given equal volumes of physiological saline.
At the 11th day, after 4 h of treatment as mentioned
above, all groups (except for the control group) were given
a gavage of 14ml/kg BW of Red Star Erguotou Liquor
(Beijing Red Star, Beijing, China) once a day for 4 weeks.
The liquor contains 56% alcohol, so the dose approxi-
mately equals to 7.84 g alcohol per kilogram body weight.
After the last treatment (day 38), the rats were fasted for
4 h and were executed by the cervical dislocation method.
Blood samples were collected immediately and allowed to
clot. The serums were obtained through centrifugation at
3000 rpm for 8min at 4 °C and were placed in ultra-low-
temperature freezer until the assay of AST, ALT, TB, and
TG. The liver and kidney were excised, cleared of blood
with ice-cold saline, and stored in a refrigerator immedi-
ately until the assay of T-SOD, GSH, and MDA.

Biochemical assay
AST, ALT activities and TB (Nanjing Jiancheng, Nan-
jing, China), TG (Shanghai Mind, Shanghai, China)

levels were detected using the assay kits guided by the
corresponding protocols.
Liver and kidney homogenates (10%, w/v) were pre-

pared by using a high-speed dispersator (Ningbo Scientz,
China) with ice-cold physiological saline. The clear
supernatant liquid was obtained through centrifugation
at 5000 rpm for 5 min at 4 °C and used for T-SOD, GSH,
and MDA assays (Nanjing Jiancheng, Nanjing, China).
The assays were conducted using the kits according to
the protocols of the manufacturer. Total protein concen-
tration in the supernatant was detected according to
Coomassie Brilliant Blue method.

Histopathological studies
Hematoxylin–eosin (H&E) staining was performed first.
The liver tissue was fixed with 10% formalin at normal
temperature, and was subsequently embedded in paraffin
after 1 day. The tissues were cut into 5 μm-thick slices
and then stained with H&E. Pathological section was ex-
amined in the blinding way under a light microscope.
Oil Red O staining was performed to observe the lipid

droplet morphology as described in a previous study
[38]. Quantitative analysis of the hepatic lipid content
was conducted using Image-Pro Plus (Version 6.0).

Fig. 1 Experimental timelines
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Statistical analysis
The results were reported as mean ± SEM. The data
were analyzed using IBM SPSS Statistics 20. Statistically
significant data were further analyzed and compared
using Duncan’s multiple range test. Significant difference
was considered at p < 0.05.

Results
General observation
When treated with 14ml/kg alcoholic liquor, the rats in
every group (except the normal control) behaved ex-
citedly, such as unsteady walking and accelerated breath-
ing. Food utilization simultaneously began to decrease.
Except for the normal group, the other groups did not
exhibit mortality until the 15th day after alcohol admin-
istration. Average weight dramatically declined in the
groups treated with alcohol (Table 1). The result shows
that Red Star Erguotou Liquor significantly reduced the
BW of rats. No significant differences were found be-
tween the alcoholic liquor group and other treated alco-
holic liquor groups. As shown in Table 1, liver and
kidney weight to BW ratios were similar, and no signifi-
cant change was observed among the different groups.

Effect of YGMM on ALT and AST levels
As shown in Table 2, serum levels of AST and ALT in
the alcohol group were significantly elevated after treat-
ment with alcohol (p < 0.05), indicating the establish-
ment of an acute alcohol-induced liver injury model in

rats. YGMM exhibited a curative effect on the acute
alcohol-induced liver injury by dose-dependently redu-
cing the AST and ALT levels in rats. Finally, the AST
and ALT levels of YGMM group (dose of 5 ml/kg) de-
creased by 40.86 and 24.71%, respectively, as compared
with those in the alcohol group.

Effect of YGMM on TB and TG levels
TB and TG contents in serum are presented in Table 2.
TB and TG levels in the alcohol group were significantly
increased. The administration of YGMM remarkably
prevented the elevation of TB level in a dose-dependent
manner. However, TG level did not show the same
trend. No significant differences in TG level were found
among YGMM groups, indicating that the effect of
YGMM on TG level was not related to the dose within a
certain concentration range.

Effect of YGMM on T-SOD, GSH, and MDA levels
The T-SOD, GSH, and MDA levels in the liver and kid-
ney are shown in Table 3. Compared with that in the
control group, the GSH level in the alcohol group was
significantly decreased (p < 0.05). However, T-SOD and
MDA levels showed no significant change. The treat-
ment of YGMM slightly recovered the decreased T-SOD
and GSH levels. This obscure effect resulted from the
mild oxidative damage in this study.

Table 1 Effect of YGMM on weight and organ index in control and alcohol-treated rats

Group Dose BW (g) Liver index Kidney index

Initial Final (g/100 g BW− 1)

Control 241.25 ± 6.50 419.78 ± 16.43 3.47 ± 0.07 0.56 ± 0.04

Alcohol 237.26 ± 4.59 346.73 ± 21.65** 3.32 ± 0.24 0.53 ± 0.01

Silymarin 100 mg/kg BW 237.16 ± 3.56 315.40 ± 24.93*** 3.19 ± 0.12 0.55 ± 0.03

YGMM (low dose) 1.0 ml/kg BW 238.16 ± 3.46 310.88 ± 11.33*** 3.71 ± 0.11 0.57 ± 0.03

YGMM (medium dose) 2.5 ml/kg BW 239.54 ± 4.24 335.73 ± 15.89** 3.50 ± 0.15 0.60 ± 0.04

YGMM (high dose) 5.0 ml/kg BW 234.26 ± 4.12 331.80 ± 16.51** 3.19 ± 0.08 0.61 ± 0.02

Data are presented as mean ± SEM in each group. Statistical significance is indicated by asterisks. **p < 0.01, ***p < 0.001 compared with normal control group. No
significant differences were found between the alcohol group and other alcohol-treated groups

Table 2 Effect of YGMM on ALT, AST, TG and TB levels in control and alcohol-treated rats

Group ALT (U/l) AST (U/l) TG (mg/dl) TB (mg/dl) AST/ALT

Control 8.49 ± 0.33 21.70 ± 1.10 3.75 ± 0.56 0.28 ± 0.02 2.57 ± 0.15

Alcohol 11.37 ± 0.37## 31.28 ± 1.95### 10.50 ± 2.14## 0.47 ± 0.04### 2.77 ± 0.23

Silymarin 8.09 ± 0.47** 24.16 ± 3.56* 2.67 ± 0.61*** 0.32 ± 0.03** 3.03 ± 0.55

YGMM (low dose) 9.35 ± 1.12 22.24 ± 2.23** 3.08 ± 1.09** 0.33 ± 0.03** 2.41 ± 0.13

YGMM (medium dose) 8.34 ± 1.44* 19.79 ± 0.58*** 4.77 ± 1.42* 0.26 ± 0.06*** 2.52 ± 0.43

YGMM (high dose) 8.56 ± 0.41* 18.50 ± 1.88*** 4.89 ± 1.80* 0.26 ± 0.01*** 2.15 ± 0.14

Data are presented as mean ± SEM in each group. Statistically significant differences are indicated by asterisks and pound sign (*p < 0.05, **p < 0.01, ***p < 0.001
compared with the model group; ##p < 0.01, ###p < 0.001 compared with the control group)
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Histopathological studies
The livers of the normal control group exhibited resilience
in a bright color after being separated from the rat body;
however, those in the alcohol group were dim and swell-
ing. The histological features are shown in Fig. 2. In the
normal control group, the liver lobular architecture was
clear, the central veins were intact, the hepatic cell cords

were arranged neatly, and the cells were uniform in size.
No pathological changes were detected in the normal con-
trol. However, the alcohol group showed some liver
pathological changes, which are characterized by the cellu-
lar edema, inflammatory cell infiltrates. Histopathological
changes caused by alcohol were improved by YGMM.
The best therapeutic effect was achieved at a dose of 5ml/

Table 3 Effect of YGMM on T-SOD, GSH, and MDA levels in alcoholic liver injury of rats

Group Liver Kidney

T-SOD
(U/mg protein)

GSH
(mg/g protein)

MDA
(nmol/mg protein)

T-SOD
(U/mg protein)

GSH
(mg/g protein)

MDA
(nmol/mg protein)

Control 214.67 ± 22.34 3.32 ± 0.37 1.53 ± 0.20 127.90 ± 15.81 3.95 ± 0.19 0.88 ± 0.04

Alcohol 180.71 ± 5.71 2.43 ± 0.24# 1.57 ± 0.11 99.43 ± 4.17 3.39 ± 0.11# 0.77 ± 0.04

Silymarin 199.52 ± 6.48 2.91 ± 0.11 1.57 ± 0.16 86.15 ± 3.30 3.03 ± 0.14 1.22 ± 0.07***

YGMM (low dose) 220.10 ± 18.50 3.18 ± 0.23* 1.61 ± 0.13 100.47 ± 14.39 3.72 ± 0.16 0.86 ± 0.06

YGMM (medium dose) 209.49 ± 8.93 2.86 ± 0.22 1.70 ± 0.24 85.07 ± 3.31 3.05 ± 0.19 0.73 ± 0.08

YGMM (high dose) 210.86 ± 19.61 2.96 ± 0.03 1.83 ± 0.13 96.94 ± 4.12 3.42 ± 0.15 0.47 ± 0.10**

Data are presented as mean ± SEM in each group. #p < 0.05 compared with the normal control group; *p < 0.05, **p < 0.01, ***p < 0.001 compared with the
alcohol group

Fig. 2 Light microscopic analysis of rat liver sections of normal rats and alcohol treatment with or without YGMM administration (H&E staining,
200×). Control group was given equal volumes of physiological saline, model group was treated with alcohol, positive group was treated with
alcohol and Silymarin (100 mg/kg), low group was treated with alcohol and YGMM (1 ml/kg), middle group was treated with alcohol and YGMM
(2.5 ml/kg), high group was treated with alcohol and YGMM (5 ml/kg). Black arrow showed inflammatory cells, and red arrow showed the
swelling of liver cells
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kg, which was similar to the silymarin group and was re-
markable distinction with the alcohol group.
In the liver tissues and cells, Oil Red O can dissolve in

lipid combined with triglyceride and become orange
lipid droplets. After staining with Oil Red O, abundant
orange lipid droplets were found around the central
veins in the alcohol group (Fig. 3 a). These lipid droplets
were sharply reduced in the silymarin and YGMM
groups (Fig. 3b), indicating that YGMM had a positive
therapeutic effect for alcoholic fatty liver.

Discussion
Many effective and accurate animal models have been
developed to establish a liver pathology that is com-
pletely analogous to the clinical situation for ALD. Ro-
dents and oral administration are the most suitable
option for the animal model of ALD [39]. Wang et al.
gave rats 50% alcohol at a dose of 12 ml/kg for 8 days
[40], and another different method was that the mice or-
ally received 2.4 g/kg of ethanol for 15 days [41]. Other
researchers gave rats 6 g/kg of alcohol for 4 weeks [42].
In the preliminary assay, the serum levels of ALT, AST,
and TG were all significantly increased after 4 weeks of
alcohol treatment in rats. As a consequence, the experi-
ment was terminated, and blood and liver and kidney
tissues were collected on the 28th day of alcohol admin-
istration in our formal tests. Given the strong aversion
of rats to alcohol, the consumption of animal feed was
reduced after alcohol administration. In the present

study, the BW of rats significantly decreased after
alcohol treatment, which was not restored by YGMM
(Table 1).
ALT and AST are important metabolic enzymes in

liver cells and are usually at a low level in the plasma.
When the structural integrity of hepatic cells and even
organelles such as mitochondria were damaged from xe-
nobiotics, soluble enzymes such as ALT and AST com-
partmented will be released into the blood [43].
Therefore, the serum transaminases (ALT and AST)
usually are regarded as the optimum markers to diag-
nose liver injury [44]. In our study, significant increases
of ALT and AST levels were obtained after administra-
tion with alcohol (Table 2), which indicated that alcohol
treatment could damage the plasma and organelle mem-
branes. YGMM pretreatment attenuated ALT and AST
elevation in a dose-dependent manner (Table 2). The
change complied with a universal viewpoint that the
ALT and AST content recovered to a general level ac-
companied by liver parenchyma rehabilitation and hep-
atic cell regeneration [45].
Pyridoxal 5′-phosphate is an important ALT and AST

coenzyme. Pyridoxal 5′-phosphate deficiency is common
in ALD [46]. Its depletion causes a reduction of liver
ALT at a certain degree than AST [47]. As a result,
AST/ALT value is increased, which is regarded as typical
in patients with alcoholic hepatitis [48]. This increased
value in alcohol-related hepatic disease was found in
1967 [49]. The same changing trend could be found in

Fig. 3 Oil Red O staining for qualitatively and quantitatively visualizing hepatic lipid accumulation under light microscope (200×). Control group
was given equal volumes of physiological saline, model group was treated with alcohol, positive group was treated with alcohol and Silymarin
(100 mg/kg), low group was treated with alcohol and YGMM (1 ml/kg), middle group was treated with alcohol and YGMM (2.5 ml/kg), high group
was treated with alcohol and YGMM (5 ml/kg). ###p < 0.001 compared with the control group, ***p < 0.001 compared with the model group
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people suffering from alcoholic hepatitis and acute liver
injury in other studies [50, 51]. In the present study, the
ratio of AST/ALT was increased in the alcohol group
compared with normal control, which indicated an ad-
vanced ALD, although no significant change was ob-
served (Table 2). A similar result was also reported by
Lin et al. [42]. YGMM treatment inhibited the increase
in AST/ALT ratio (Table 2), which may alleviate alco-
holic hepatic injury.
Bilirubin is a final product of heme degradation by

heme oxygenase. Biliverdin, which is converted by heme
oxygenase, is the intermediate degradation product of
bilirubin [52, 53]. Bilirubin is a potent antioxidant that
can effectively remove ROS and nitric oxide [54, 55]. Ac-
cumulating evidence has shown that serum total biliru-
bin concentration is independently and inversely
associated with the progression of diabetic nephropathy,
coronary atherosclerosis, and type 2 diabetes with retin-
opathy [56–58]. In contrast to the aforementioned disor-
ders, high serum total bilirubin concentration was
observed in ALD and non-ALD patients [59, 60]. A pos-
sible mechanism for the increase in alcohol consumption
is that alcohol competitively inhibits bilirubin conjuga-
tion [60]. UDP-glucuronosyltransferase (UGT1A1), a
metabolizing enzyme preventing bilirubin accumulation
to toxic levels [61], is involved in the pathway for glucur-
onidation of alcohol and bilirubin. Hence, the presence
of alcohol will affect bilirubin conjugation by a competi-
tive relationship. Although an elevation of UGT1A1
mRNA and microsomal UGT1A1 protein was observed
in the liver of ethanol consumer animals [62], the com-
pensation is not effective in the condition with high con-
centrations of alcohol substrate. In the current study,
the alcohol group had a significant increase (167.86%) of
serum total bilirubin level compared with the normal
control group. However, YGMM treatment obviously re-
covered the serum total bilirubin content (Table 2). This
therapeutic effect of YGMM may be due to stimulating
the pathway for glucuronidation of bilirubin.
Studies show that fat accumulation is universal in hep-

atic cells treated with alcohol [63, 64]. Fat accumulation
in ALD is a complicated process. The exact mechanisms
underlying steatohepatitis, including fatty acid synthesis
and oxidation, are primarily regulated by SREBP-1 and
PPAR-α [65]. Alcohol inhibits PPAR-α transcriptional
activating and DNA combining capacity, which is then
influenced by dissociative fatty acid transportation and
oxidization. Alcohol exposure also elevates SREBP-1
content and promotes the synthesis of fatty acids [65].
In the present study, the serum level of TG contents in
the alcohol group was increased by 280% compared with
that in the normal control group; however, YGMM
treatment significantly reduced the serum TG level
(Table 2). Oil Red O staining further confirmed the

increase in lipid level (Fig. 3b). YGMM treatment (doses
of 2.5 and 5ml/kg) recovered the pathologic lesions
similar to silymarin. The increase in serum TG level and
lipid change in hepatocytes indicated that alcoholic fatty
liver was already established in the animal model. In this
study, YGMM treatment could cease fat accumulation
caused by alcohol exposure. This therapeutic effect of
YGMM may be facilitated through the above molecular
pathways. Another possible pathway is the altered
NADH/NAD+ redox potential, which has long been
regarded as the way that alcohol causes fatty liver [65].
In this pathway, alcohol-induced fatty liver could be pre-
vented by antioxidants [66]. Therefore, the effect of
YGMM on serum TG level may explain clearly with the
antioxidants contained in YGMM. Substantial alcohol
may become the preferential fuel in hepatic cells and
turn it into important energy source instead of fat, which
supports fatty acid accumulation [67]. Hyperlipidemia
prevails in a minimal liver damage at the beginning of
alcohol consumption but has an opposite trend in a se-
vere liver injury.
Oxidative stress, which is involved in alcohol abuse,

can damage antioxidant defenses and produce ROS at
the same time [68]. T-SOD, GSH, and MDA contents
were measured in the liver and kidney tissues of each
group to detect the oxidative damage induced by alcohol
in the current study. Alcohol treatment exhibited 1.37-
fold less GSH in liver tissues and 1.17-fold less GSH in
kidney tissues compared with the control group. By con-
trast, the value of T-SOD and MDA showed no signifi-
cant change. These data showed that mild oxidative
damage was present in these two organs in the current
assay. Thus, the hepatoprotective activity of YGMM for
oxidative injury can be disregarded. In a previous study,
a generous alcohol dose did not induce oxidative stress
in livers of male SD rats [69]. Alcohol inhibited GSH
synthesis and increased the consumption of GSH due to
oxidation [70]. As a result, hepatic and nephritic GSH
levels were decreased significantly in the current study.
GSH is a key intracellular antioxidant [67], and in-
creased consumption of GSH helps to keep a stabilized
intracellular environment against pro-oxidants and anti-
oxidants. Therefore, mild oxidative damage was obtained
in this study. Alcohol-induced oxidative damage is con-
sidered to be a crucial player in the mechanisms by
which alcohol produces liver injury. Cytochrome P450
2E1 is a critical enzyme in this process, which generates
O2

•− and H2O2 [70]. O2
•− can be transformed to H2O2

by T-SOD, and then catalase transforms H2O2 to H2O.
Another widely accepted idea, where MDA is closely re-
lated with cytochrome content, can be taken into con-
sideration [71]. In this case, when oxidative damage was
mild due to the increased consumption of GSH, the con-
tent of T-SOD and MDA ranged in the same level after
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alcohol treatment. No significant change in SOD level
after alcohol administration (5 g/kg) to rats was observed
by Develi et al. [72].
Yigan mingmu in Chinese means “benefits the liver and

brightens the eyes.” To explore the hepatoprotective effect
of YGMM, we established an acute alcohol-induced liver
injury model. Our data revealed that YGMM treatment
decreased significantly the high levels of ALT, AST, TB,
and TG caused by alcohol exposure. Even so, the current
work was the preliminary experimental study of YGMM
under the ideal conditions, in which had the appropriate
alcohol dose to induce the liver injury and proper volume
of YGMM to prevent the progress of ALD. A better
understand of YGMM to decrease fat accumulation needs
to consider the human alcohol intake and dosage range of
YGMM in daily life, and clinical experiments with more
sample size. Meanwhile, further studies on the chemical
composition analysis and molecular mechanism of hepa-
toprotective activity are necessary to understand the vital
role of YGMM against acute alcohol-induced liver injury.

Conclusion
YGMM exhibits an attractive protective effect against
acute liver injury induced by alcohol in rats. The de-
creased ALT, AST, and TG levels indicated that YGMM
could restore the damage in hepatic cell and cease fat
accumulation. These properties are considered as the
primary mechanisms of YGMM to prevent the progress
of ALD. This study presented persuasive results to sup-
port the hepatoprotective activity of YGMM.
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