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Abstract

Background: Endophytic fungi are a proven source of bioactive secondary metabolites that may provide lead
compounds for novel drug discovery. In this study, crude extracts from fungal endophytes isolated from Datura
stramonium were evaluated for cytotoxic activity on two human cancer cell lines.

Methods: Fungal endophytes were isolated from surface sterilized aerial parts of D. stramonium and identified
using molecular, morphological and phylogenetic methods. Ethyl acetate crude extracts from these isolates were
evaluated for cytotoxic activity on A549 lung carcinoma and UMG87 glioblastoma cell lines. Metabolite profiling
was then performed by liquid chromatography coupled to quadrupole time-of-flight with tandem mass spectrometry
(LC-QTOF-MS/MS) for the cytotoxic crude extract.

Results: Eleven fungal endophytes were identified from D. stramonium. Significant cytotoxicity was only observed from
the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells (IC50 = 21.49 μg/ml). Metabolite profiling of this
crude extract tentatively revealed the presence of the following secondary metabolites: 1,8-dihydroxynaphthalene (1),
anserinone B (2), phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6). Compounds 2 and 3 have
been shown to be cytotoxic in literature.

Conclusion: The findings in this study suggest that the crude extract of Alternaria sp. KTDL7 possesses compound(s)
cytotoxic to glioblastoma multiforme cells. Future studies to isolate and characterize the cytotoxic compound(s) from
this fungus could result in lead development of a fungal-based drug for glioblastoma multiforme treatment.
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Background
Internal tissues of plants are habitats of a class of benefi-
cial endosymbiotic microorganisms (predominantly bac-
teria and fungi) called endophytes that have been
observed in all plants investigated to date [1]. In this
plant-endophyte relationship, plants are hosts which

generally offer nourishment and protection while endo-
phytes improve plant defense, health and stress tolerance
by solubilizing phosphates, fixing nitrogen, secreting
siderophores, hydrolytic enzymes, antimicrobials or by
producing plant hormones such as indole-3-acetic acid
[2, 3].

In comparison to free living fungi, crude extracts of
fungal endophytes are an underexplored but rich source
of bioactive and chemically diverse secondary metabo-
lites which include terpenoids, alkaloids, phenols, furan-
diones, dimeric anthrones and benzopyroanones [4, 5].
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This is evidenced by a detailed review of 46 genera and
111 species of fungal endophytes producing cytotoxic
secondary metabolites by Chen et al. [6]. In order to in-
crease the likelihood of isolating fungal endophytes that
produce medicinally important secondary metabolites,
documented medicinal plants that are used in traditional
medicine are targeted [5].
Datura stramonium is a medicinal plant that is known

for producing over 64 tropane alkaloids of which atropine,
scopolamine and hyoscyamine are predominantly found
in relatively high concentrations [7, 8]. While ethnomedi-
cal uses of D. stramonium include inhalation of smoke
from burnt leaves to relieve symptoms of asthma, bron-
chitis, sedation, epilepsy and psychosis to name just a few
[8], exploration into the use of tropane alkaloids as poten-
tially anticancer lead compounds has been ongoing since
the early 2000s [9]. Bacterial and fungal endophytes have
been previously isolated from D. stramonium in studies
focusing on the potential use of endophytic extracts as
biocontrol agents for controlling plant and human patho-
gens [10–13], in vitro α-glucosidase inhibitors and antioxi-
dant agents [14]. To the best of our knowledge, this is the
first study that reports the cytotoxic activity of crude ex-
tracts endophytic fungi from D. stramonium on human
A549 lung carcinoma and UMG87 glioblastoma cell lines.
The results of the bioactive crude extract observed in this
study may form a foundation for developing a fungal-
derived drug for glioblastoma multiforme treatment.

Methods
Collection of plant material
Healthy free growing D. stramonium plants were col-
lected in summer in Johannesburg (South Africa) at the
following coordinates: 26°13′04.5″S, 28°12′48.3″E. Plant
diversity and vegetative growth on the site were high
with different species interspersed between D. stramo-
nium. Plant samples were transferred to the laboratory
immediately after collection and were thoroughly
washed with distilled water upon arrival. Formal identifi-
cation of the collected plants was done by Abdulwakeel
Ayokun-nun Ajao, a botanist from the Department of
Botany and Plant Biotechnology at the University of Jo-
hannesburg. A voucher specimen of the whole plant was
deposited in the department’s public herbarium and was
assigned deposition number RAM-001.

Isolation and morphological characterization of fungal
endophytes
The isolation of fungal endophytes was done on the
same day of collection following a modified method de-
scribed by Uche-Okereafor et al., [15]. Briefly, 10 g of
each of the aerial plant parts (stems, leaves, fruit covers
and seeds) were separately soaked in 5% Tween 80, ad-
equate to cover each sample for five minutes with

vigorous shaking. This was subsequently followed by
washing the samples several times with sterile distilled
water to remove Tween 80. Samples were then dipped
in 70% ethanol for 1 min and rinsed with sterile distilled
water five times, followed by dipping in 1% sodium
hypochlorite for 10 min. Plant parts were then finally
rinsed five times with sterile distilled water and aliquots
of 50 μL of the last rinse water for each sample were
plated on potato dextrose agar (PDA) (Merck, Johannes-
burg, SA) as wash controls to determine the effective-
ness of surface sterilization. The surface sterilized
samples were then macerated in sterile phosphate buff-
ered saline (PBS) (Oxoid, Basingstoke, Hampshire, UK)
solution using a sterile mortar and pestle. Serial dilutions
of macerated samples were made by pipetting 1 mL of
macerated sample into 9 mL of PBS to make a 10− 1 dilu-
tion, followed by subsequent dilutions up to 10− 9. The
serial dilutions were then plated in triplicates on PDA
for enumeration of fungal endophytes and incubated at
28 °C (IncoTherm, Labotec, Johannesburg, SA) for up to
21 days. Morphologically distinct fungal isolates were
then sub-cultured several times to obtain pure isolates.
Fungi were differentiated from bacteria using lactophe-
nol cotton blue staining. Lactophenol cotton blue is a
dye which stains chitin in fungal cell walls blue [16].

Molecular characterization (rDNA-ITS sequencing and
phylogenetic analysis)
DNA extraction was done using the ZR Fungal/Bacterial
DNA Kit™ (Zymo Research, Irvine, CA, USA), following
the manufacturer’s instructions. Polymerase chain reac-
tion (PCR) was done to amplify the internal transcribed
spacer (ITS) region of ribosomal DNA (rDNA) using the
ITS1 (5´-TCCGTAGGTGAACCTGCGG-3´) and ITS4
(5´-TCCTCCGCTTATTGATATGC-3´) primer pair. For-
ward and reverse direction sequencing was done using the
ABI PRISM™ 3500xl Genetic Analyzer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) followed by the puri-
fication of the sequencing products using ZR-96 DNA Se-
quencing Clean-up Kit™ (Zymo Research, Irvine, CA,
USA). DNA sequences were then analyzed using the
FinchTV software [17], followed by a Nucleotide Basic
Local Alignment Search (BLASTN) on the National Cen-
ter for Biotechnology Information (NCBI) using the Gen-
Bank database to identify closely matching organisms [18].
The sequences used in the molecular data sets ranged
from 450 to 700 base pairs prior to deletion of ambiguous
data occurring at the beginning or at the end of each se-
quence [19]. Maximum likelihood phylogenetic recon-
struction was done using MEGA version 7.0 software [20],
with Dothidea insculpta and Monochaetia monochaeta as
outgroups. Bootstrap values were calculated from 1000
replicate runs. Phylogenetic reconstruction of isolates was
done by grouping isolates according to morphological
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characteristics observed on PDA cultures. The rDNA-ITS
sequences were then submitted to GenBank.

Shannon-Weiner diversity index (H´)
Fungal endophyte diversity was determined by the
Shannon-Wiener diversity index (H´), using the formu-
lae below:

HËC ¼ Σ Pi� ln Pið Þ; Pi ¼ mi
N :

where mi represents number of individuals and N rep-
resents the total number of individuals [21].

Fermentation and extraction of secondary metabolites
Fungal endophytes were fermented as monocultures in
3 L of PDB (Potato infusion 200 g/L, dextrose 20 g/L)
[22]. Incubation was done for 21 days at 28 °C in an or-
bital shaking incubator (Amerex Gyromax, Temecula,
CA, USA) at 150 rpm. After fermenting the fungi, extro-
lites which are mainly secondary metabolites were ex-
tracted from broth monocultures using analytical grade
ethyl acetate [23]. This extraction was achieved by firstly
filtering the broth monocultures through a Whatman
No. 1 filter paper to separate the mycelia from the broth
culture. Equal volumes of ethyl acetate and filtrate broth
were then added to a separating funnel, shook vigorously
to mix the two liquids and allowed to stand for 20 min.
The organic solvent phase was then collected and con-
centrated using a rotary evaporator under reduced pres-
sure at 40 °C and the resulting crude extracts were
allowed to air dry and consequently stored at − 20 °C.

MTS assay on UMG87 glioblastoma and A549 lung
carcinoma cell lines
End-point cytotoxicity evaluation of crude extracts on
UMG87 glioblastoma and A549 lung carcinoma cell
lines (ATCC, Manassas, VA, USA) was performed fol-
lowing the colorimetric MTS [3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium] assay method [6, 10]. Cells at 5 × 104 cells/
mL were initially seeded in 96 well plates containing
Dulbecco’s modified eagle medium (Gibco, Carlsbad,
CA, USA) with 15% heat inactivated fetal bovine serum
(Merck, Johannesburg, SA) and incubated at 37 °C in 5%
CO2 (v/v) for 24 h [24]. Crude fungal extracts and aura-
nofin (a positive control) were then dissolved in di-
methyl sulfoxide (DMSO) (Merck, Johannesburg, SA)
and then added to cell cultures at concentrations of
3.13, 6.25, 12.5, 25, 50 and 100 μg/mL, in triplicates. The
cell cultures were then left to incubate for a further 96 h,
after which 5 μl of MTS (Promega, Madison, WI, USA)
was added to the cells and absorbance values measured
at 490 nm after 1, 2 and 4-h incubation periods. Cell via-
bility was calculated using the following formulae:

%Cell Viability ¼ Ea−Ba

Ca−Ba
� 100

where Ea is absorbance of the extract, Ba is absorbance
of the blank and Ca is the absorbance of the negative
control (untreated cells) [25]. GraphPad Prism software
(v. 7.05, GraphPad Software, Inc., La Jolla, CA, USA)
was used to produce dose response curves by non-linear
regression analysis of cell viability data, hence determin-
ing the mean inhibitory concentration (IC50) value.

xCELLigence® real-time cell analyzer (RTCA) assay on
U87MG glioblastoma cells
xCELLigence® RTCA assay was performed by initially
seeding 1 × 105 cells/mL of U87MG glioblastoma cells on
gold microelectrode precoated 96 well electronic plates
(E-Plate® 96, ACEA Biosciences Inc., San Diego, CA, USA)
and incubating at 37 °C in 5% CO2 (v/v) for 45 h. Selected
crude fungal extracts and auranofin (a positive control)
were then dissolved in DMSO and then added at concen-
trations of 3.13, 6.25, 12.5, 25, 50 and 100 μg/mL, in tripli-
cates. Untreated cells (0 μg/mL) were included as a
negative control. The cell cultures were then incubated
for a further 171 h, with impedance measurements taken
every 15 min during the total incubation period of 216 h.
The data was retrieved, and a graphic representation of
the bioactivity was reproduced.

Metabolite profiling of fungal crude extracts by LC-QTOF-
MS/MS
Metabolite profiling of the cytotoxic fungal extract was
done by liquid chromatography coupled to a quadrupole
time-of-flight with tandem mass spectrometry (LC-
QTOF-MS/MS), using a previously described modified
method [26, 27]. This system has a Dionex UltiMate 3000
ultra-high-performance liquid chromatography (UHPLC)
(Thermo Scientific, Darmstadt, Germany) coupled to a
Compact™ QTOF (Bruker Daltonics, Bremen, Germany)
that uses an electrospray ionization (ESI) interface. The
crude extract of the fungal endophyte Alternaria sp.
KTDL7 was prepared for analysis by dissolving 1 mg/mL
(w/v) in HPLC grade methanol (Merck, Johannesburg,
SA), followed by sonication for 10 min, and finally filtra-
tion through 0.22 μm polyvinylidene fluoride (PVDF)
membrane syringe filters into 1 mL LC auto-sampler vials.
An injection volume of 5 μL was used in the system for
chromatographic separation of analytes in reverse phase
ultra-high-performance liquid chromatography (RP-
UHPLC) through a Raptor ARC-18 column with dimen-
sions of 2.7 μm (particle size), 2.1 mm (internal diameter),
100 mm (length) and 90 Å (pore size) (Restek, Bellefonte,
PA, USA). The mobile phase was composed of solvent A
(A) consisting of 0.1% formic acid in H2O (v/v) and solv-
ent B (B) consisting of 0.1% formic acid in acetonitrile (v/
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v). Gradient flow of the mobile phase was initiated by a
2.0 min isocratic step at 5% B followed by an increase to
95% in 28 min, an isocratic step at 95% B for 5 min
followed by a decrease to 5% B in 1 min upon re-
equilibration to initial conditions at a flow rate of 300 μL/
min. The ESI(+) parameters were as follows: set capillary
voltage at 4.5 kV; end plate offset at − 500 V; dry heater
temperature at 220 °C; dry gas flow rate at 2.5 L/min and
nebulizer gas pressure at 1.8 Bar. Mass spectra were ac-
quired in centroid mode ranging from 50 to 1300m/z
[28]. Instrument operation, control and data acquisition
was done using HyStar software version 2.10 (Thermo Sci-
entific, Darmstadt, Germany). Spectral data processing
was performed in Bruker Compass DataAnalysis software
version 4.3 (Bruker Daltonics, Bremen, Germany). Met-
Frag web tool version 2.1 (https://msbi.ipb-halle.de/Met-
FragBeta/) was used to characterize the resulting fragment
spectra by linking to three compound databases, namely
PubChem, ChemSpider and KEGG [29]. The MetFrag
settings used were as follows: The MetFrag database
search settings used were as follows: Database search
relative mass deviation (Search ppm) = 10.0; precursor
ion = [M + H]+; fragment peak match absolute mass
deviation (Mzabs) = 0.01; fragment peak match relative
mass deviation (Mzppm) = 10; charge = positive and
mode = [M + H]+.

Statistical analysis
Quantitative variables were analyzed in STATISTICA
version 10 (StatSoft, Inc., Tulsa, OK, USA). Multivariate
analysis of variance (MANOVA) and the least significant
difference (LSD) post hoc were used to analyze the
mean ± standard deviation (SD) of crude extracts at vari-
ous concentrations. A probability of P ≤ 0.05 was taken
to indicate statistical significance.

Results
Isolation, characterization and identification of culturable
fungal endophytes
In this study, 11 culturable fungal endophytes were re-
covered from D. stramonium (seven isolates from the
leaves, three from the stems and one from the seeds).
Examination of morphological macroscopic and micro-
scopic features revealed that four out of eleven were fila-
mentous fungi. Analysis of the ITS sequences resulted in
the taxonomic classification of five fungal isolates to spe-
cies level with the rest only classified to genus level
(Table 1). These results corroborated with the phylogen-
etic reconstruction which grouped isolates according
their respective genera and species (see Additional file 1).
The Shannon-Weiner diversity index (H´) for the iso-
lated endophytes was calculated and found to be 3.44
with the highest diversity observed in isolates from the
leaves. This diversity index takes into account

homogeneity/heterogeneity of isolates and usually ranges
between 1.5 to 4.5, where the higher values correspond
to increase in species diversity [30].

MTS cytotoxicity assay on A549 lung carcinoma cells
Statistically significant differences in the effect of fungal
crude extracts on A549 lung carcinoma cells were ob-
served at P ≤ 0.05 level even though the cytotoxicity ob-
served was limited. Cell viability ranged from 92.2 to
146.9%, reflecting limited inhibitory effect presented by
the fungal crude extracts during the incubation period
of 96 h (Fig. 1). Cell viability of above 100% was mostly
observed for the highest concentrations of fungal crude
extracts (25, 50 and 100 μg/mL), which may typically
have resulted from the antioxidant potential of com-
pounds in fungal crude extracts, causing elevated ab-
sorbance values for the reduced of MTS product
(formazan) that are higher than those observed in the
negative control cells [31, 32].

MTS cytotoxicity assay on UMG87 glioblastoma cells
The crude fungal extract from Alternaria sp. KTDL7
showed the highest antiproliferative activity on UMG87
glioblastoma cells, recording the lowest cell viability of
2.68% at 50 μg/mL, followed by 4.29% at 100 μg/mL (Fig.
1). Multi-variate analysis of variance test of the means
from the two concentrations showed that their cytotoxic
activity had no significant difference since P > 0.05. Fur-
thermore, the cytotoxic effects of these two concentrations
from Alternaria sp. KTDL3 were found to be comparable
with that of auranofin on the same cell line at treatments
of 12.5–100 μg/mL (Fig. 1). The IC50 value for the fungal
extract from Alternaria sp. KTDL7 was determined by
plotting a dose-response curve (Fig. 2) and was found to
be 21.49 μg/mL, just below the American National Cancer
Institute guidelines (NIC) for preliminary screening assays
which state that crude extracts achieving 50% anti-
proliferative activity at < 30 μg/mL after 72 h of exposure
are to be regarded as cytotoxic [33, 34].

xCELLigence® RTCA assay on UMG87 glioblastoma cells
UMG87 glioblastoma cells were exposed to selected fun-
gal crude extracts of A. alternata KTDL3, Bipolaris sp.
KTDS5 and Alternaria sp. KTDL7 which was initially
observed to induce cytotoxicity on this cell line. Re-
sponse of the cells to the fungal extracts was monitored
for 171 h using a RTCA system. A dose-dependent in-
hibition was observed for the crude extract of Alternaria
sp. KTDL7, where the highest concentration of 100 μg/
mL induced an irreversible cytotoxic effect on the
UMG87 glioblastoma cells as shown in Fig. 3. Cells ex-
posed to 100 μg/mL of the crude extract were unable
show significant recovery from the cytotoxic effects from
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Table 1 Eleven fungal endophytes isolated from D. stramonium

Fungal
isolate

Accession
number

Closest relatives in NCBI ITS identity
(%)

Tissue Phylum; Class; Order Classification

KTDL1 MF952612 Gyroporus castaneus Gc1 (EU718099) 88 Leaves Basidiomycota; Agaricomycetes;
Boletales

Gyroporus sp.

KTDL2 MF952613 Alternaria tenuissima Isolate 4
(KU937315)

97 Leaves Ascomycota; Dothideomycetes;
Pleosporales

A. tenuissima

KTDL3 MF952614 A. alternata CS36–4 (KY814634) 100 Leaves Ascomycota; Dothideomycetes;
Pleosporales

A. alternata

KTDL4 MF952615 Colletotrichum sp. LTL119 (MF663557) 100 Leaves Ascomycota; Sordariomycetes;
Glomerellales

Colletotrichum sp.

KTDL6 MF952616 Talaromyces sp. SWP-2017 k NRRL
62271 (KX657354)

89 Leaves Ascomycota; Eurotiomycetes;
Eurotiales

Talaromyces sp.

KTDL7 MF952617 Alternaria sp. XN-3-1 (KR822138) 100 Leaves Ascomycota; Dothideomycetes;
Pleosporales

Alternaria sp.

KTDL8 MF952618 Sporothrix schenckii CBS 211.61
(KP017093)

100 Leaves Ascomycota; Sordariomycetes;
Ophiostomatales

Sporothrix schenckii

KTDL11 MF952619 Trichoderma longibrachiatum FIB PRI 6.2
(LC106115)

91 Seeds Ascomycota; Sordariomycetes;
Hypocreales

Trichoderma sp.

KTDS1 MF952620 Pilobolus crystallinus 007pNNP
(KP760865)

98 Stem Zygomycota; Mucoromycotina;
Mucorales

Pilobolus
crystallinus

KTDS2 MF952621 Rhodotorula mucilaginosa Feni 103
(KP223714)

99 Stem Basidiomycota; Urediniomycetes;
Sporidiales

Rhodotorula
mucilaginosa

KTDS5 MF952622 Bipolaris setariae GP14 (KR183790) 99 Stem Ascomycota; Dothideomycetes;
Pleosporales

Bipolaris sp.

Fig. 1 A summative profile of bioactivity activity of fungal extracts on (a) A549 lung carcinoma cells and (b) UMG87 glioblastoma cells after 96 h
of exposure. Columns in the histograms represent the mean ± SD (n = 3) of fungal crude extracts tested at six different concentrations ranging
from 3.13 to 100 μg/mL. The positive control was auranofin and the alphabets above the columns represent significant differences among various
concentrations of extracts
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the point of exposure at the 45th hour to the 216th hour
on the timeline.

Auranofin (a positive control) had a striking effect on
UMG87 glioblastoma cells as some concentrations
seemed to promote hyper metabolism than inhibit it. Ex-
posure of the cells to a drug concentration of 6.25 μg/mL
at the 45th hour resulted in an immediate decline in cell
viability followed by a recovery and surge in viability from
the 96th hour which exceeded the cell viability of the
negative control (0 μg/mL) and cells treated with 3.13 μg/
mL of the drug. The surge in viability of cells treated with
6.25 μg/mL of auranofin at the 96th hour could be associ-
ated with development of antineoplastic resistance of sur-
viving cells, leading them to overcome the cytotoxic
effects of auranofin by upregulation of metabolic genes
and thus leading to a spike in cell viability. Mechanisms of
drug resistance in glioblastoma cells have been reviewed
in Haar et al., [35]. Similar to the MTS assay, no signifi-
cant cytotoxic activity was observed for the crude extracts
of A. alternata KTDL3 and Bipolaris sp. KTDS5.

Metabolite profiling of Alternaria sp. KTDL7’s crude
extract by LC-QTOF-MS/MS
Secondary metabolites in the crude extract of Alternaria
sp. KTDL7 were tentatively identified using an untar-
geted screening method. The impact of PDB on the fun-
gal crude extract was considered by analyzing the
spectrum of PDB and subtracting it from the spectrum
of the fungal crude extract. Secondary metabolites were
identified using the spectral information of molecular
ions and their collision induced dissociation (CID) frag-
ments which were compared with reference compounds
and their in-silico fragments in online databases (Fig. 4)
[36]. The identified compounds are as follows: 1,8-dihy-
droxynaphthalene (1), anserinone B (2), phelligridin B

(3), metacytofilin (4), phomopsidin (5) and vermixocin
A (6). CID mass fragment data is available in
Additional file 2.

Discussion
Medicinal plants with known ethnopharmacological
properties are proven sources for isolation of endophytes
that produce secondary metabolites with novel and med-
ically significant bioactivities [21, 37]. The surface
sterilization method of isolating endophytes is highly ef-
fective to reduce contamination of epiphytes when so-
dium hypochlorite is employed [38]. In this study,
efficacy of surface sterilization was validated by plating
on PDA the last rinse water used in the surface
sterilization process as a control. No microbial growth
was observed on these plates.

The Shannon-Wiener diversity index (H´) for the iso-
lated endophytes was calculated and found to be 3.44,
indicating a high species diversity among the fungal
endophyte community in D. stramonium. Greatest diver-
sity was observed in the leaves where the highest num-
ber of isolates were recovered with the Alternaria genus
being the most prevalent. This genus has been previ-
ously reported as an endophyte in D. stramonium [39],
while also being a pathogen in other plants of a different
species which include cereals, strawberries and tomatoes
[40]. Interestingly, pathotypes of the Alternaria genus
mostly occur as foliar pathogens which produce host-
selective toxins (HSTs) to target the above-mentioned
susceptible plants [41]. Both the endophytes and patho-
types of this genus are rarely isolated from the seeds and
roots, and less frequently from the stems [40–43].

The three endophytes from the Alternaria genus (A.
tenuissima KTDL2, A. alternata KTDL3 and Alternaria
sp. KTDL7) produced varying shades of dark brown

Fig. 2 Dose-response inhibition curve of the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells
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Fig. 3 Real-time analysis of the bioactivity of crude fungal extracts on UMG87 glioblastoma cells. Extracts from Alternaria alternata KTDL3 (a), Alternaria
sp. KTDL7 (b), and Bipolaris sp. KTDS5 (c) were administered in six concentrations ranging from 0 to 100 μg/mL on the 45th hour on the timeline and
the response of the cells was monitored up until the 216th hour. Cell viability was recorded as cell index, which is a relative change in measured
impedance. Auranofin (d) was used as a positive control
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compounds from the crude extract of Alternaria sp.
KTDL7 and determining their mechanism of action,
which could result in the development of a fungal-based
drug for glioblastoma multiforme treatment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12906-019-2752-9.

Additional file 1. Phylogenetic relationships of fungal endophytes from
healthy leaves, stems and seeds of D. stramonium inferred based on ITS1
and ITS4 sequences. The numbers at branch nodes represent maximum
likelihood bootstrap values from analyses with 1000 replicates. In
boldface are fungal endophytes isolated from D. stramonium (GenBank
accession number, name and isolate code). Fungal endophytes according
to morphological characteristics on PDA plates, where group A are
filamentous fungi, B and C being non-filamentous fungi. Evolutionary
analyses were conducted in MEGA7 (Kumar et al., 2016).

Additional file 2. LC-QTOF-MS-MS_Analysis. Mass spectra for the crude
extract of Alternaria sp. KTDL7 and the mass fragment patterns of the
identified compounds: 1,8-dihydroxynaphthalene (1), anserinone B (2),
phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6).
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