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Abstract

Background: Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic
properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-
induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative
activities in mice in order to examine possible underlying mechanisms.

Methods: PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate
and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot
plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The
antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for
prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain
using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia.

Results: GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide),
palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the
abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole
reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case
test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was
observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME
decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized
by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative
activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static
and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal
latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency.

Conclusions: These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The
antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and
GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.
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Background
Pain is an unpleasant sensory and emotional experience
associated with actual or potential tissue damage or de-
scribed in terms of such damage [1]. The phenomenon
of pain may be nociceptive or neuropathic in nature,
and caused by damage to non-neural or neuronal tissues
respectively [2, 3]. Neuropathic pain is a major cause of
morbidity and has a profound impact on patient well-
being. It involves the sensation of allodynia; a painful
sensation to a normally non-noxious stimulus and
hyperalgesia; an exaggerated pain response to a normally
noxious stimulus [4]. Neuropathic pain results from
various causes that affect the central nervous system in-
cluding multiple sclerosis, post stroke or spinal cord
pain. Alternatively, it may be associated with damage to
the peripheral nervous system, for instance, diabetic
neuropathy and trigeminal or post-herpetic neuralgia
[5]. Management of neuropathic pain poses an enor-
mous challenge due to the restricted efficacy of assorted
pharmacotherapies including both natural treatments
[6–8] and synthetic medicaments [9, 10] which are lim-
ited by the occurrence of side effects and the extent of
pain inhibition [11].
Passiflora incarnata L. (Additional file 1: Figure S1)

from the genus Passiflora (family: Passifloraceae) com-
monly known as Passion flower, is a fast growing peren-
nial vine widely spread in tropical and warm temperate
regions [12]. Phytochemical analysis of P. incarnata has
demonstrated that flavonoids constitute about 2.5 % of the
total phyto-constituents [13, 14] mainly present in the
leaves, the greatest concentration of flavonoid being
vitexin compared to the other species of its genus
[12, 15]. P. incarnata has been studied for its anal-
gesic [16], anxiolytic [17–20], anticonvulsant [21], an-
titussive [22], aphrodisiac [23], anti-asthmatic [24],
anti-diabetic and hypolipidemic properties [25] along
with efficacy in the treatment of cannabinoid [26],
morphine [27], nicotine [28] and alcohol dependence
[29]. Traditionally, P. incarnata has been used for
curing various ailments like anxiety, insomnia, convul-
sions, sexual dysfunction, cough and cancer [30] and
is well known in relieving neuropathic conditions
[12]. In this regard, an eye wipe test has been con-
ducted suggesting a potential application in relieving
trigeminal neuralgia [31]. Clinical investigations on P.
incarnata have indicated effectiveness in the treat-
ment of anxiety [32, 33], insomnia [34], opioid with-
drawal [35], attention deficit hyperactivity disorder
[36] and postmenopausal symptoms [37].
Neuropathic pain results from a cascade of neurobio-

logical events that induces electrical hyperexcitability in
somatosensory conduction pathways and results in
hyperesthesia, dysesthesia, hyperalgesia, paresthesia or
allodynia [38]. Currently, the most common choices of

therapy for neuropathic pain are tricyclic antidepressants
and anticonvulsants [39, 40]. However, these therapies
are only partially effective and are usually accompanied
by a variety of side effects [41]. The use of complemen-
tary and alternative medicine has been shown to pro-
duce some beneficial effects in the management of
painful neuropathy [42] and several herbal medicines ex-
hibit promise in different types of experimentally in-
duced neuropathic pain models [6, 8, 43–45]. Thus there
is some scope for new herbal medicines to combat neuro-
pathic pain syndromes [46]. The present study was there-
fore designed to evaluate the ameliorative effect of P.
incarnata methanolic extract (PI-ME) in an animal model
of streptozotocin-induced diabetic neuropathic allodynia
and vulvodynia [47] in rodents. Additionally, PI-ME in-
duced antinociceptive, anxiolytic and sedative activities
were also investigated using naloxone and pentylenetetra-
zole (PTZ) to probe its possible underlying mechanisms.

Methods
Chemicals
Morphine (Punjab Drug House, Lahore, Pakistan), diclo-
fenac sodium (≥98 %, Continental Chemicals Company
Pvt. Ltd. Pakistan), naloxone (98 %, Hangzhou Uniwise
International Co., Ltd, China), gabapentin (99 %, MKB
Pharmaceuticals Pvt Ltd Peshawar, Pakistan), diazepam
(Valium 10 mg/ 2 ml, Roche, Pakistan), pentylenetetra-
zole (≥98 %, Sigma Aldrich, UK) , streptozotocin (≥98 %,
Sigma Aldrich, UK) and commercial grade methanol
(Haq Chemicals Ltd Peshawar, Pakistan).

Preparation of Passiflora incarnata methanolic extract
P. incarnata whole plant was collected from the botanical
garden of the Department of Pharmacy, University of
Peshawar. It was authenticated by Prof. Dr. Mohammad
Ibrar of the Department of Botany, University of Peshawar
and a specimen was deposited in the herbarium with a vou-
cher number 20062 (PUP). The aerial parts were separated,
shade dried, and coarsely powdered (1000 g). It was macer-
ated for 7 days with commercial grade methanol (5 L). The
extract was filtered and concentrated under reduced pres-
sure at 60 °C in a rotary evaporator until a semisolid extract
containing no methanol was obtained (yield: 31.20 %).

Phytochemical analysis
PI-ME was preliminary evaluated by qualitative phyto-
chemical analysis [47] and was further screened by quanti-
tative analysis of flavonoids, alkaloids, saponins and tannins
[48, 49]. It was also subjected to gas chromatography/mass
spectrometry (GC/MS) analysis which was carried out on a
6890 N Agilent gas chromatograph coupled to a JMS
600 H JEOL mass spectrometer. The compound mixture
was separated on a fused silica capillary SPBI column,
30 m× 0.32 mm, 0.25 μm film thickness, in a temperature
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program from 50 to 256 °C with a rate of 4 °C/min with
2 min hold. The injector was at 260 °C and the flow rate of
the carrier gas, helium was 1 mL/min. The EI mode of the
JMS 600 H JEOL mass spectrometer had an ionization volt-
age of 70 eV, electron emission of 100 μA, ion source
temperature of 250 °C and analyzer temperature of 250 °C.
Samples were injected manually in split mode and the total
elution time was 90 min. MS scanning was performed from
m/z 85 to 390. Identification of the active constituents was
based on the computer evaluation of mass spectra of the
sample through NIST-based AMDIS (automated mass
spectral deconvolution and identification software), direct
comparison of peaks and retention times with those of
standard compounds as well as by following the character-
istic fragmentation patterns of the mass spectra of particu-
lar classes of compounds.

Animals
BALB/c mice (18–26 g) and female Sprague Dawley rats
(150-200 g) maintained in a 12 h light/dark cycle at 22
± 2 °C were used in the experiments. Food and water
were provided ad libitum. Experiments on animals were
performed in accordance with the UK Animals (Scientific
Procedures) Act 1986 and according to the rules and
ethics set forth by the Ethical Committee of the Department
of Pharmacy, University of Peshawar. Approval for this
study was granted with the registration number: 06/EC-14/
Pharm (dated: April 06, 2014). The animal control groups
used in experiments were given normal saline which was
also the vehicle for all the drugs administered throughout
all the experiments.

Abdominal constriction assay
BALB/c mice (18–22 g, n = 8 mice per group) of either
sex were injected with 0.6 % acetic acid (10 mL/kg, i.p)
to induce an abdominal constriction response [50, 51].
In the abdominal constriction assay, the mean incidence
of constrictions expressed as % protection across all
experiments was normalized relative to untreated con-
trols. PI-ME (150, 200 and 250 mg/kg, p.o), morphine
(5 mg/kg, i.p) or diclofenac (50 mg/kg, i.p) were
administered 30 min before acetic acid injection. In
the opioid antagonism study, the animals were pre-
treated with naloxone (0.5 mg/kg, s.c), 5 min before
acetic acid administration. Percentage protection was
calculated as:

% Protection ¼ �
1 – Number of abdominal constrictions after
treatment=Number of abdominal constrictions

of untreated control
� � 100

Hot plate test
BALB/c mice (18–22 g, n = 8 mice per group) of either
sex were pretested for their response latencies on a hot

plate (Harvard apparatus, USA) maintained at 54.0 ±
0.1 °C. The response end-point was signified by hind
limb flick, lick or jumping at which point animals were
immediately removed from the thermal nociceptive
stimulus in order to avoid any tissue damage or possibil-
ity of subsequent hyperalgesia. A cut-off time of 30 s
was imposed such that if they did not respond within
this latency period then they were immediately removed
from the hot plate stimulus [51]. Thirty minutes after
pretesting, the animals were administered PI-ME (100,
150, 200 mg/kg; p.o), morphine (5 mg/kg; i.p) or diclofe-
nac (50 mg/kg, i.p). In the antagonism studies, naloxone
(1.0 mg/kg, s.c) or PTZ (10 mg/kg, i.p) were administered
10 or 30 min respectively before treatment and the animal
response latencies were measured at 30, 60, 90 and
120 min. The percentage antinociception was calculated as:

% Antinociception ¼ Test latency – control latencyð Þ=
Cut‐off time – control latencyð Þ � 100

Anxiolytic activity (Staircase test)
BALB/c mice (18–24 g, n = 8 mice per group) of either
sex were administered PI-ME (200, 400 and 600 mg/kg,
p.o) or diazepam (2 mg/kg, i.p). In the drug combination
experiments, PTZ (10 mg/kg, i.p) was administered
30 min prior to drug treatment. The number of rears
and steps climbed by each animal was observed for
3 min using the staircase apparatus and the methods de-
scribed by Simiand and coworkers [52]. A step was con-
sidered to be climbed only if the criterion was met
whereby an animal placed all four paws on the step.

Locomotor activity
BALB/c mice (18–26 g, n = 6 mice per group) of either
sex were administered with PI-ME (200, 400 and
600 mg/kg, p.o) or diazepam (4 mg/kg, i.p). In the drug
combination experiments, PTZ (10 mg/kg, i.p) was ad-
ministered 30 min prior to drug treatment. Thirty min
later, the animals were placed in the recording apparatus
with a floor area of 50 × 40 cm divided into four equal
quadrants by lines. The number of lines crossed by each
animal was recorded for 30 min using a digital camera
(Cat’s Eye IR IP Camera, Taiwan) [53].

Streptozotocin induced neuropathic pain
Induction of mechanical allodynia and vulvodynia
Female Sprague Dawley rats (150– 200 g, n = 6 rats
per group) food withdrawn for 16 h were administered
streptozotocin (50 mg/kg, i.p) and food was immediately
provided. On the 5th day, animals exhibiting random
blood glucose levels greater than 270 mg/dl were in-
cluded in the study [54]. Body weights and blood glucose
were measured at specified time periods. The bedding
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material was frequently changed to avoid any infection
due to excessive urination. On the 29th day post strepto-
zotocin administration, animals were transferred to wire
mesh cages and acclimatized for 15–45 min. They were
then assessed for mechanical allodynia or vulvodynia be-
fore and after PI-ME or standard gabapentin administra-
tion using the von Frey up-down method [55].

Treatment schedule
Animals were divided into five groups. Group I received
normal saline and served as control. Group II remained
as the streptozotocin positive control group. Group III
received a single intraperitoneal dose of gabapentin
(75 mg/kg) and served as the standard. Group IV and V
were treated with PI-ME at doses of 200 and 300 mg/kg
respectively. The therapeutic doses of PI-ME for evalu-
ation in neuropathic pain were selected on the basis of
its analgesic, anxiolytic, locomotor and respective antag-
onistic activities.

Assessment of static and dynamic allodynia
Static allodynia was assessed using a series of von Frey fila-
ments (0.4, 0.6, 1, 1.4, 2, 4, 6, 8, 10, 15 g), starting with a
2.0 g force applied perpendicularly to the plantar surface of
the right hind paw for 5 s or until the animal displayed a
withdrawal response (lifting of the paw). Animals respond-
ing to 3.63 g force or below were included in the study and
15 g was selected as the cut-off force [54].
Dynamic allodynia was assessed by lightly stroking the

plantar surface of the hind paw with a cotton bud. Lift-
ing or licking the paw was considered as a withdrawal
response and the time taken to show a withdrawal reac-
tion was considered as the paw withdrawal latency
(PWL). Animals responding to the cotton bud within 8 s
were included in the study and 15 s was selected as the
cut off time [54].

Assessment of static and dynamic vulvodynia
Static vulvodynia was assessed by shaving the anogenital
area including the mons pubis. A series of von Frey fila-
ments (0.008, 0.02, 0.04, 0.07, 0.16, 0.4, 0.6, 1 g), were
applied perpendicularly to the mucous membrane of the
anogenital region for 4 s starting with a 0.04 g force,
until a flinching response occurred. Animals responding
to a 0.16 g force or below were included in the study
and a 1.0 g force was selected as the cut-off force [56].
Dynamic vulvodynia was assessed by lightly brushing a

cotton bud over the mucous membrane of the anogeni-
tal region for 10 s or until a flinching response occurred.
Animals showing a flinching response within 5 s were
included in the study and 10 s was selected as the cut-
off time [56].

Statistical analysis
Data were expressed as mean ± SEM. Statistical compari-
sons were carried out by one way ANOVA followed by
Dunnett’s, Bonferroni or Tukey’s multiple comparison tests
where appropriate using GraphPad Prism 5 (GraphPad
Software Inc. San Diego CA, USA). Statistical significance
was deduced at P ≤ 0.05.

Results
Phytochemical analysis of Passiflora incarnata
Preliminary qualitative analysis of PI-ME disclosed the
presence of flavonoids, alkaloids, carbohydrates, tannins,
glycosides, fixed oils and saponins (Table 1). Subsequent
more detailed quantitative analysis revealed the presence
of flavonoids (72 %), saponins (10 %) and alkaloids
(13.4 %) in PI-ME. The major compounds obtained from
GC-MS analysis of PI-ME included: 9-Octadecenamide
(Oleamide) (C18H35NO, MW: 281), n-Hexadecanoic acid
(Palmitic acid) (C16H32O2, MW: 256), dodecanoic acid,
3-hydroxy- (C12H24O3, MW: 216), 4H-Pyran-4-one, 2,3-
dihydro-3,5-dihydroxy-6-methyl- (C6H8O4, MW: 144),
vitamin-E (C29H50O2, MW: 430), cis,cis,cis-7,10,13-Hexa-
decatrienal (C16H26O, MW: 234), β-Sitosterol (C29H50O,
MW: 414), 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol,
(3β,5Z,7E)- (C27H44O3, MW: 416), pregnane-3,11,20,21-
tetrol, cyclic 20,21-(butyl boronate), (3α,5β,11β,20R)-
(C25H43BO4, MW: 418), ethyl 9-hexadecenoate (C18H34O2,
MW: 282), stigmasterol (C29H48O, MW: 412), octade-
canoic acid (C18H36O2, MW: 284), 2H-1-Benzopyran-
6-ol, 3,4-dihydro-2,8-dimethyl-2- (4,8,12-trimethyltri-
decyl)-, [2R-[2R*(4R*,8R*)]]- (C27H46O2, MW: 402),
and phytol (C20H40O, MW: 296) among other import-
ant constituents (Table 2 and Fig. 1).

Antinociceptive activity of Passiflora incarnata
Abdominal constriction assay (tonic visceral chemically-
induced nociception)
A significant attenuation (F(5,42) = 91.99, P < 0.001) of
acetic acid incited abdominal constriction was produced
by PI-ME at doses of 200 mg/kg (P < 0.01) and 250 mg/
kg (P < 0.001) compared to saline control. Similarly, a
significant increase (P < 0.001) in the percentage protec-
tion against abdominal constriction was observed with
diclofenac (50 mg/kg) and morphine (5 mg/kg) (Fig. 2a).
Naloxone (0.5 mg/kg) (F(9,70) = 44.75, P < 0.001) signifi-
cantly reversed the antinociceptive activity of morphine
(P < 0.001) and PI-ME (200 and 250 mg/kg) (P < 0.05)
but not that of diclofenac (50 mg/kg) as shown in
Fig. 2b.

Hot plate test (acute phasic thermal nociception)
In the hot plate test, 30 min after drug administration
(F(5,42) = 200.2, P < 0.001) a marked increase in percentage
antinociception was observed with morphine (5 mg/kg)
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(P < 0.001), diclofenac (50 mg/kg) (P < 0.05) and PI-ME at
a dose of 200 mg/kg (P < 0.05). After 60 min (F(5,42) =
55.36, P < 0.001), the increase in percentage response was
less significant (P < 0.05) for morphine whilst it was highly
significant (P < 0.001) for PI-ME (150 and 200 mg/kg), the
activity being retained in the latter case up to 90 min
(F(5,42) = 36.61, P < 0.001, not shown). However, after
120 min (F(5,42) = 4.352, P < 0.01) it was only PI-ME at
doses of 150 mg/kg (P < 0.05) and 200 mg/kg (P < 0.01)
that afforded protection against thermal nociception
(Fig. 3). Naloxone (1.0 mg/kg) (F(7,56) = 46.60, P < 0.001)
reduced the % antinociceptive effect of both morphine
(P < 0.001) and PI-ME (150 and 200 mg/kg) (P < 0.01)
(Fig. 4a). Pentylenetetrazole (10 mg/kg) (F(7,56) = 35.91,
P < 0.001) by way of contrast, significantly reduced
the antinociceptive effect of PI-ME only at the
150 mg/kg dose (P < 0.05) (Fig. 4b).

Anxiolytic-like activity of Passiflora incarnata
In the staircase test, there was a substantial increase in
the number of steps climbed (F(4,25) = 21.04, P < 0.001) in
response to both diazepam (2 mg/kg, P < 0.001) and PI-
ME (200 mg/kg, P < 0.05) versus the animal control
group treated with saline vehicle. However, at the high-
est dose (600 mg/kg) the passiflora extract significantly
reduced (P < 0.05) the number of steps climbed in com-
parison with the controls (Fig. 5a). In contrast, the num-
ber of rears (F(4,25) = 5.403, P < 0.01) was inhibited not
only by treatment with diazepam (P < 0.01) but also by
all three doses of PI-ME (200 and 400 mg/kg, P < 0.05;
600 mg/kg, P < 0.01) in comparison with the saline ve-
hicle controls (Fig. 5b). The post hoc test revealed that
there was no significant effect of pentylenetetrazole

(10 mg/kg) by itself on step climbing nor was there any
modification of the stair climbing responses when it was
administered in combination with diazepam or PI-ME
(Fig. 6a). However, it did reverse the decrement in rears
initiated by PI-ME (200, 400 and 600 mg/kg) and actu-
ally augmented (P < 0.05) the overall rearing incidence
(F(9,50) = 6.497, P < 0.001) as shown in Fig. 6b.

Sedative activity of Passiflora incarnata
Locomotor activity
In the locomotor activity study, there was a pronounced
reduction in cage line crossing instigated by both (F(4,25) =
15.39, P < 0.001) diazepam (4.0 mg/kg, P < 0.001) and PI-
ME at 400 mg/kg (P < 0.01) and 600 mg/kg (P < 0.001)
though there was no significant motoric decline at the
lowest PI-ME dose (200 mg/kg, P > 0.05) (Fig. 7a). Penty-
lenetetrazole (10 mg/kg) (F(7,40) = 26.88, P < 0.001) blocked
(P < 0.05) the reduced locomotor effect of PI-ME (400
and 600 mg/kg) by increasing the incidence of line
crossing but it did not modify the diazepam loco-
motor regression (Fig. 7b).

Effect of Passiflora incarnata on mechanical allodynia and
vulvodynia
Animals administered a single streptozotocin (50 mg/kg)
treatment developed both static and dynamic allodynia
in their hind paws when tested 29 days later (Fig. 8).
Hence, there was a substantial decrease (P < 0.001) in
PWT and PWL in comparison with saline treated ani-
mals. One hour after PI-ME dosing in STZ-pretreated
animals on the test day, there was an ensuing increase in
PWT (F(4,25) = 31.41, P < 0.001) and PWL (F(4,25) = 20.25,
P < 0.001) observed for PI-ME at doses of 200 mg/kg

Table 1 Preliminary qualitative phytochemical analysis of Passiflora incarnata methanolic extract (PI-ME)

Sample Test Observation Result

1. Aqueous solution of PI-ME + 10 % ammonium hydroxide solution Appearance of yellow
coloration

Flavonoids present

2. A portion of PI-ME + few drops of Wagner’s reagent Reddish brown
precipitate

Alkaloids present

3. A small volume of PI-ME + 1–2 drops of Mayer’s reagent Creamy or white
precipitate

Alkaloids present

4. 0.5 ml PI-ME + 0.5 ml benedict’s reagent→mixed and boiled for 2 min Characteristic colored
precipitate

Carbohydrates
present

5. 1 ml PI-ME + 1 ml Barfoed’s reagent→ boiled for 2 min Red precipitate Carbohydrates
present

6. 50 mg PI-ME + 5 ml distilled water + small amount of 5 % ferric chloride solution Intense green
coloration

Tannins and phenolic
compounds present

7. 50 mg PI-ME + conc. HCL→ heated on water bath for 2 h→ resultant hydrolysate filtered→
2 ml hydrolysate + 3 ml chloroform→ chloroform layer separated out + 10 % ammonia
solution

Pink coloration Glycosides present

8. A small amount of PI-ME→ compressed between two pieces of filter paper Formation of oil spot
on filter paper

Fixed oils present

9. 50 mg PI-ME + 20 ml distilled water→ shaken for 15 min Formation of 2 cm
thick layer of foam

Saponins present
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(P < 0.001, P < 0.01) and 300 mg/kg (P < 0.001). Simi-
larly, 2 h following treatment with PI-ME on the test
day in the STZ-pretreated group, there was a sizeable
increase in PWT (F(4,25) = 17.92, P < 0.001) noted at
doses of 200 mg/kg (P < 0.01) and 300 mg/kg (P <
0.001) of PI-ME. However, at the 2 h test, PWL
(F(4,25) = 59.63, P < 0.001) was increased only by the
300 mg/kg (P < 0.001) rather than the 200 mg/kg PI-
ME dose. Gabapentin (75 mg/kg) administered as a
positive control, also generated an alleviation of
mechanical allodynia by elevating (P < 0.001) PWT
and PWL compared to the 29-day streptozotocin
alone pretreated animals at both the 1 and 2 h testing
times (Fig. 8).
The animal group pretreated with streptozotocin by it-

self 29 days earlier expressed mechanical static and dy-
namic vulvodynia (P < 0.001) compared to the saline
vehicle treated controls on the test day (Fig. 9). It was

notable that PI-ME (200 and 300 mg/kg) did not modify
the diminished FRT (streptozotocin induced static vul-
vodynia) at either the 1 h (F(4,25) = 49.85, P < 0.001) or
2 h (F(4,25) = 17.12, P < 0.001) test day readings. However,
there was a significant increase in streptozotocin-
shortened FRL (dynamic vulvodynia) within 1 h (F(4,25)
= 27.38, P < 0.001) and 2 h (F(4,25) = 10.08, P < 0.001) of
PI-ME treatment at 200 mg/kg (P < 0.001, P < 0.05) and
300 mg/kg (P < 0.001, P < 0.01). The single test day posi-
tive control dose of gabapentin (75 mg/kg) alleviated
both mechanical static and dynamic vulvodynia at the 1
and 2 h readings as evidenced by significant increases in
FRT (P < 0.001, P < 0.01) and FRL (P < 0.001) versus the
streptozotocin alone pretreated animals.

Discussion
The antinociceptive activity of P. incarnata methanolic
extract (PI-ME) was evaluated in mice using the hot

Table 2 GC/MS analysis of Passiflora incarnata methanolic extract

Chemical constituent Formula Molecular weight R.T. (min) Percent abundance

10-Undecen-1-al, 2-methyl- C12H22O 182 8.465 0.377

1,3-Pentanediamine C5H14N2 102 8.809 0.353

4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- C6H8O4 144 10.27 5.477

1-Pentanol, 2-methyl-, acetate C8H16O2 144 10.83 0.621

1,2,6-Hexanetriol C6H14O3 134 11.10 0.623

4-Cyclopropylcarbonyloxytridecane C17H32O2 268 11.32 0.664

5-Cyclopropylcarbonyloxypentadecane C19H36O2 296 11.60 0.796

9-Tetradecen-1-ol, acetate, (E)- C16H30O2 254 12.87 0.488

trans-2-undecenoic acid C11H20O2 184 15.98 0.438

Dodecanoic acid, 3-hydroxy- C12H24O3 216 15.99 13.64

4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol C10H12O3 180 18.64 0.393

d-Mannose C6H12O6 180 18.86 0.378

7-Methyl-Z-tetradecen-1-ol acetate C17H32O2 268 19.34 0.395

l-Gala-l-ido-octose C8H16O8 240 19.54 0.406

n-Hexadecanoic acid; (Palmitic acid) C16H32O2 256 23.68 21.86

Phytol C20H40O 296 30.20 1.004

9-Hexadecyn-1-ol C16H30O 238 31.33 0.956

cis,cis,cis-7,10,13-Hexadecatrienal C16H26O 234 31.81 2.175

Octadecanoic acid C18H36O2 284 33.09 1.209

9-Octadecenamide, (Z)-; (Oleamide) C18H35NO 281 42.11 33.52

9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol, (3β,5Z,7E)- C27H44O3 416 42.79 1.762

Pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate), (3α,5β,11β,20R)- C25H43BO4 418 42.98 1.422

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,8-dimethyl-2-(4,8,12-trimethyltridecyl)-,
[2R-[2R*(4R*,8R*)]]-

C27H46O2 402 43.69 1.033

Ethyl 9-hexadecenoate C18H34O2 282 45.78 1.390

Vitamin E C29H50O2 430 45.99 2.579

Stigmasterol C29H48O 412 48.01 1.229

β-Sitosterol C29H50O 414 49.08 1.776
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plate test which is suitable for assessing centrally medi-
ated acute phasic nociception [57] and the acetic acid in-
duced abdominal constriction assay for tonic visceral
nociception [58, 59]. Mice were selected as the species
of choice in these specific tests because they are mani-
festly sensitive not only to opioid mediated effects but
also to coexistent non-steroidal anti-inflammatory drug
(NSAID) activity [51]. What is more, accumulating evi-
dence indicates that GABAergic transmission plays a
pivotal role in the inhibitory regulation of the nocicep-
tive process, and the murine abdominal constriction
assay as well as the hot plate test both detect dose
dependent GABA agonist antinociception in this species
[60, 61]. In both tests, diclofenac as a standard anti-
inflammatory analgesic and PI-ME produced antinocicep-
tive activity consistent with previous studies [16, 31, 62]. It
was notable that the antinociceptive effect of PI-ME was
reversed by the opioid- and GABAA- receptor antagonists,
naloxone and pentylenetetrazole (PTZ) respectively, sug-
gesting an involvement of opioidergic and GABAergic
mechanisms in the mediation of the antinociception. Opi-
oid agonists decrease pain transmission by activating de-
scending nerve fibers from the periaqueductal gray and
raphe nuclei supraspinally and also by inhibition of affer-
ent nerve transmission by binding to pre- and postsynap-
tic opioid receptors within the spinal cord dorsal horn
[63]. Furthermore, GABAergic neurons and receptors that

are intercalated within the spinal cord and higher brain
pathways are important for the origination, transmission,
and modification of pain impulses in such a way that alter-
ation of GABA transmission yields antinociception [64]. P.
incarnata has been shown to modulate the activity of
GABAergic and opioid systems [21] to produce central
analgesic activity as evaluated by a reduced duration of
paw licking in neurogenic and inflammatory nociceptive
phases in the formalin test [31]. Due to a prevalence of
GABA as a non-α-amino acid constituent of P. incarnata
extract [65], several of its pharmacological effects have
been ascribed to mediation via the GABA system. These
include not only affinity for GABAA but also GABAB re-
ceptors in addition to modification of GABA uptake [66].
The antinociceptive effects of both GABAA and GABAB

receptor agonists are known to involve activation or inhib-
ition of other neurotransmitter or neuromodulator path-
ways [64] and it is evident that central GABAergic
systems are involved in opioid-mediated analgesia [67].
Thus, it is possible that administration of GABA receptor
agonists in combination with other agents may yield
GABA receptor-related therapies for the treatment of
acute and chronic pain [64].
The anxiolytic-like activity of PI-ME was assessed by

the incidence of rears or steps climbed in the stair case
test. The extract at a dose of 200 mg/kg significantly in-
creased the number of climbed steps, although at a

Fig 1 MS chromatogram of Passiflora incarnata methanolic extract
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Fig. 2 a Antinociceptive activity of Passiflora incarnata (PI-ME) in the mouse abdominal constriction assay. ***P < 0.001, **P < 0.01 compared to
saline vehicle control (ANOVA followed by Dunnett’s post hoc test), (n = 8 mice per group). b Effect of naloxone (NXL-0.5) on the antinociceptive
activity of PI-ME in the mouse abdominal constriction assay. *P < 0.05, ***P < 0.001 compared to morphine (MOR-5), diclofenac (DIC-50) or PI-ME
(ANOVA followed by Bonferroni’s multiple comparison post hoc test), (n = 8 mice per group)

Fig. 3 Antinociceptive activity of Passiflora incarnata (PI-ME) in the mouse hot plate test. *P < 0.05, **P < 0.01, ***P < 0.001 compared to saline
vehicle control (ANOVA followed by Dunnett’s post hoc test), (n = 8 mice per group)

Aman et al. BMC Complementary and Alternative Medicine  (2016) 16:77 Page 8 of 17



higher dose (600 mg/kg) it decreased this parameter.
Similarly, the frequency of rears was diminished by the
extract at all three doses tested and this outcome was
blocked by PTZ. Anxiolytic-like activity has been shown
to be associated with an increase in the number of steps
climbed by mice whilst sedative activity is thought to be
linked to a decrease in the frequency of rears [18] and
this is the very reason why this paradigm was chosen in
this species to evaluate P. incarnarta. Other studies have
attributed an increased rearing incidence to an anxiety-
like behavior and a decreased number of steps climbed
to a sedative effect [68]. In conjunction with this, anxio-
lytic activity has been coupled with lower doses while
sedative effects have been related to higher doses of

plant extracts or reference drugs [69]. In this context,
PI-ME displayed an anxiolytic-like effect at 200 mg/kg,
while at 600 mg/kg it exhibited sedative activity. This
was also confirmed in the open field test where it was
observed that PI-ME decreased the number of lines
crossed at doses of 400 and 600 mg/kg comparable to
that of diazepam and these findings concur with the lit-
erature [17–19, 70]. Since PTZ reversed the anxiolytic-
like and sedative actions of PI-ME, underlying GABA
mediated mechanisms may well be implicated. In a se-
lection of studies, the sedative and anxiolytic properties
of P. incarnata have been attributed to benzodiazepine
and GABA receptor mediated biochemical processes in
the body [18, 19, 71, 72], binding to GABAA/B sites and

Fig. 4 a Effect of naloxone (NXL-1); or b pentylenetetrazole (PTZ-10) on the antinociceptive effect of Passiflora incarnata (PI-ME) in the mouse hot
plate test. *P < 0.05, **P < 0.01, ***P < 0.001 compared to morphine (MOR-5) or PI-ME (150 or 200 mg/kg) (ANOVA followed by Bonferroni’s mul-
tiple comparison post hoc test), (n = 8 mice per group)
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inhibition of GABA uptake being of particular conse-
quence [66].
The modulatory effect of P. incarnata on GABAergic

and opioid systems may provide some insight into its
beneficial effect in various painful neuropathic condi-
tions. Neuropathy induced hypersensitivity is known to
involve disruption of tonic GABAergic transmission [73]
and GABA agonists and metabolic inhibitors have been
shown to be effective in various neuropathic nociceptive
models [74–76]. Neuropathic pain has been reported to
be refractory to opioids [77, 78]. However, several studies
have shown that neuropathic pain can be attenuated by
morphine and other μ-opioid receptor agonists [79–81]
and these reports suggest that local μ-opioid receptors on
the terminals of uninjured primary afferent nociceptive
neurons are an essential target for alleviating mechanical
allodynia. In the current study we have evaluated the
methanolic extract of P. incarnata in a novel streptozoto-
cin induced diabetic animal model of neuropathic pain
established exclusively in rats [56]. The results showed
that PI-ME (200 and 300 mg/kg) induced mechanical
anti-allodynic activity exemplified by an increase in paw
withdrawal threshold (PWT) and paw withdrawal latency

(PWL) 1 and 2 h post treatment. Similarly, PI-ME also re-
lieved dynamic vulvodynia by increasing the flinching re-
sponse latency (FRL) although the extract was devoid of
activity on the static component of vulvodynia. The inten-
sity of the PI-ME dynamic anti-vulvodynia response was
comparable to that of gabapentin which was used as a ref-
erence drug due to the fact that it has proven pain reliev-
ing effects in various neuropathic pain models [54].
Gabapentin also exhibits an established propensity to alle-
viate both static and dynamic components of allodynia
and vulvodynia [56] and the current study corroborates
this assertion. The present findings also indicate that the
behavioural and antinociceptive effects of PI-ME involve
GABAergic and opioidergic mechanisms because they
were reversed by PTZ and naloxone respectively. Conse-
quently, it might be inferred that analogous processes are
implicated in PI-ME anti-allodynic/vulvodynic activity and
this requires a direct focus of further study. In relation to
this notion, Ingale and Kasture [31] suggested that opioi-
dergic as well as the nicotinic cholinergic system are in-
volved in the central analgesic activity of butanolic P.
incarnata extract in the eye wipe test. This paradigm is
used to study trigeminal pain because corneal nociceptive
receptors have a large representation in the trigeminal
ganglion through the ophthalmic branch of the tri-
geminal nerve [82]. Moreover, it has been suggested
from radioligand binding studies that it is very un-
likely that P. incarnata acts via the benzodiazepine-site of
the GABAA-receptor [66]. In this connection, it has been
postulated that GABAA α1-sparing benzodiazepine-site li-
gands might constitute a class of analgesics suitable for
the treatment of chronic pain syndromes [83]. Further-
more, there is considerable evidence implicating an im-
portant role for diminished GABAergic tone in the
development of central sensitization and hyperalgesia in
neuropathic pain models [84–86].
The phytochemical screening results of our study ver-

ify the presence of a preponderance of flavonoids as well
as alkaloids in P. incarnata as described elsewhere
[25, 87, 88]. Flavonoids are reported to be the major
phytoconstituents of P. incarnata and include chrysin,
vitexin, isovitexin, orientin, isoorientin, apigenin and
kampferol [14, 30, 89]. These polyphenolic metabo-
lites may play a role in the neuropharmacological ac-
tivity of several plants [90–92] including P. incarnata
[18, 93, 94]. Additionally, flavonoids have been reported
to elicit an analgesic effect through opioid [95] as well as
GABAergic systems [96] and have a beneficial role in
relieving neuropathic pain conditions [97–99]. Some
flavonoids like quercetin have also been identified in
P. incarnata extract [100] and are believed to be ef-
fective in diabetes mellitus induced peripheral neur-
opathy [101, 102] the activity being mediated through
an opioidergic mechanism [103]. The GCMS analysis

Fig. 5 Effect of Passiflora incarnata (PI-ME), and diazepam (2 mg/kg)
on a the number of steps climbed in the staircase test and b the
incidence of rears in mice. *P < 0.05, **P < 0.01, ***P < 0.001 compared
to saline vehicle control (ANOVA followed by Dunnett’s post hoc test),
(n = 8 mice per group)
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in this study revealed that P. incarnata contains a pre-
dominance of the fatty acid amide 9-octadecenamide (also
known as oleamide), which has hypnotic, analgesic, and
anxiolytic actions [104]. Many of oleamide’s behavioural
effects stem from its activity on various receptor systems
including GABAA [105–107], 5HT1A, 5HT2A, 5HT2C,
5HT7 [108–110], G-proteins [111], voltage gated sodium
channels [107, 112] and CB1 receptors [113]. In this re-
spect, oleamide enhances GABA receptor activity and spe-
cifically potentiates the peak chloride current when applied
with GABA to benzodiazepine-sensitive GABAA receptors
[106]. The cannabimimetic action of oleamide resulting
from its agonist action at CB1 receptors [110, 113] gives
rise to cannabinoid antagonist reversible antinociception
which is also sensitive to blockade by the GABAA

antagonist bicuculline [104]. It has been posited that en-
dogenous fatty acid derivatives such as oleamide interact
with endocannabinoids like anandamide in the modulation
of pain sensitivity [114] which may well contribute to the
inhibitory effect of P. incarnata on allodynia and vulvody-
nia observed in this study.
Other important constituents present in P. incarnata

include hexadecanoic acid (palmitic acid), 3-hydroxy-
dodecanoic acid, 2,3-dihydro-3,5-dihydroxy-6-methyl-
4H-Pyran-4-one, and vitamin-E, that have strong anti-
oxidant and neuroprotective activities and/or modulate
the GABAergic system [115–119].
The modulation of GABAergic and/or opioidergic sys-

tems by P. incarnata reported in this study may consti-
tute a proportion of the mechanisms implicated in the

Fig. 6 Effect of pentylenetetrazole (PTZ-10) on diazepam (DIZ-2) or Passiflora incarnata (PI-ME, 200 and 600 mg/kg) with respect to a the number
of steps climbed in the staircase test and b the incidence of rears in mice. *P < 0.05 compared to PI-ME alone (200, 400 or 200 mg/kg) (ANOVA
followed by Dunnett’s post hoc test), (n = 8 mice per group)
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Fig. 7 a Effect of diazepam and Passiflora incarnata (PI-ME) on mouse locomotor activity. **P < 0.01, ***P < 0.001 compared to saline vehicle
control (ANOVA followed by Dunnett’s post hoc test), (n = 6 mice per group). b Effect of pentylenetetrazole (PTZ-10) on the mouse locomotor
activity induced by Passiflora incarnata (PI-ME 400 and 600 mg/kg) or diazepam (DIZ-4). *P < 0.05 compared to PI-ME (400 or 600 mg/kg) alone
(ANOVA followed by Bonferroni’s multiple comparison post hoc test), (n = 6 mice per group)

Fig. 8 Effect of Passiflora incarnata (PI-ME) and gabapentin on a static or b dynamic allodynia, at 1 or 2 h post-treatment times in female rats on
day 29 in a streptozotocin (STZ) induced neuropathic pain model. ###P < 0.001 compared to saline control, *P < 0.01, **P < 0.05, ***P < 0.001
compared to streptozotocin alone treated animals, (n = 6 rats per group)
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amelioration of diabetic neuropathy. Additional pro-
cesses however, like a cannabimimetic action [110, 113,
114] cannot be ignored inasmuch as P. incarnata ex-
hibits antihyperglycemic and hypolipidemic activities in
streptozotocin induced diabetes mellitus [25] which
would otherwise lead to neuropathic allodynia and

vulvodynia [56]. Hyperglycemia and dyslipidaemia driven
oxidative stress is a major contributor to reduced nerve
function [120, 121] and diabetes mellitus is a major
cause of peripheral neuropathy, commonly manifested
as distal symmetrical polyneuropathy [122]. Further-
more, diabetes mellitus has been reported to be linked

Fig. 9 Effect of Passiflora incarnata (PI-ME) and gabapentin on a static or b dynamic vulvodynia at 1 or 2 h post-treatment times in female
rats on day 29 in the streptozotocin (STZ) induced neuropathic pain model. ###P < 0.001 compared to saline, *P < 0.01, **P < 0.05, ***P < 0.001
compared to streptozotocin alone treated animals, (n = 6 rats per group)

Fig. 10 Scheme summarizing the anti-allodynic/anti-vulvodynic properties of Passiflora incarnarta plus it’s antinociceptive, anxiolytic-like and
higher dose sedative activities
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with vulvodynia either as an isolated symptom or as part
of a constellation of other neuropathic abnormalities.
Such neuropathic morbidity has been termed ‘diabetic
vulvopathy’ and it profoundly affects patient’s quality of
life and management needs in order to address the phys-
ical, psychological and relationship problems caused by
the pain [123]. Our study showed that the methanolic ex-
tract of P. incarnata significantly alleviated only the dy-
namic component of vulvodynia which has been reported
more likely to be provoked by contact with clothing
among other triggers [124] and the cotton swab test is
usually used to localize painful areas in vulvodynia [125].

Conclusion
In conclusion, the methanolic extract of P. incarnata
possesses peripheral and central phasic as well as tonic
antinociceptive activity mediated through modulation of
GABAA and opioid receptors (GABAergic and opioider-
gic mechanisms shown in Fig. 10) which are disclosed
by their naloxone and PTZ reversibility. The findings
also manifest anxiolytic-like and higher dose sedative ac-
tivity of the extract, resulting from GABAergic stimula-
tion as indicated by their sensitivity to PTZ inhibition.
The extract also exhibited significant mechanical anti-
allodynic and dynamic anti-vulvodynic effects (Fig. 10)
that may be attributable at least in part to the oleamide
content and a cannabinoid-like action [110, 113, 114].
The outcomes from our study advocate an effectiveness
of P. incarnata in the treatment of various neuropathic
pain conditions. However, further studies are warranted
in order to determine a more precise association be-
tween the active constituents responsible for the anal-
gesic, anxiolytic and sedative effects of P. incarnata as
well as the specific molecular mechanisms underlying its
actions on allodynia and vulvodynia.

Additional file

Additional file 1: Passiflora incarnata plant, grown in the botanical
garden of the Department of Pharmacy, University of Peshawar,
Pakistan. (DOCX 637 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FS initiated the idea and guided the research group as supervisor in
planning and conducting experiments throughout the research project. UA
conducted the experiments and carried out calculations and statistical
analysis. She also prepared the initial draft of the manuscript. MS helped in
the analysis and interpretation of data as well as in preparing the final
version of the manuscript. SA provided her help during pharmacological
experiments throughout the study. NA assisted in the extraction of plant
material and other pharmacological activities. GA helped in the neuropathic
pain related experiments. KF attributed materials during pharmacological
screening of the plant extract. RDES guided the research group and
interpreted the results as well as critically revised the manuscript for

important intellectual content. All authors read and approved the final
manuscript.

Author details
1Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber
Pakhtunkhwa, Pakistan. 2Cardiff School of Pharmacy and Pharmaceutical
Sciences, Cardiff University, Cardiff CF10 3NU, UK.

Received: 15 August 2015 Accepted: 11 February 2016

References
1. Merskey H, Bogduk N. Task Force on Taxonomy of the International

Association for the Study of Pain. Classification of chronic pain: descriptions
of chronic pain syndromes and definition of pain terms. 2nd ed. Seattle:
IASP Press; 1994. p. 210–3.

2. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms,
and management. Lancet. 1999;353(9168):1959–64.

3. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J
Clin Invest. 2010;120(11):3760–72.

4. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain:
clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35.

5. Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective.
Nat Clin Pract Neurol. 2006;2(2):95–106.

6. Tatsumi S, Mabuchi T, Abe T, Xu L, Minami T, Ito S. Analgesic effect of
extracts of Chinese medicinal herbs Moutan cortex and Coicis semen on
neuropathic pain in mice. Neurosci Lett. 2004;370(2):130–4.

7. Bortalanza LB, Ferreira J, Hess SC, Delle Monache F, Yunes RA, Calixto JB.
Anti-allodynic action of the tormentic acid, a triterpene isolated from plant,
against neuropathic and inflammatory persistent pain in mice. Eur J
Pharmacol. 2002;453(2):203–8.

8. Kassuya CA, Silvestre AA, Rehder VLG, Calixto JB. Anti-allodynic and anti-
oedematogenic properties of the extract and lignans from Phyllanthus
amarus in models of persistent inflammatory and neuropathic pain. Eur J
Pharmacol. 2003;478(2):145–53.

9. Rosenberg JM, Harrell C, Ristic H, Werner RA, de Rosayro AM. The effect of
gabapentin on neuropathic pain. Clin J Pain. 1997;13(3):251–5.

10. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine,
gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;
352(13):1324–34.

11. Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs,
and several mechanisms. Clin J Pain. 2002;18(6):343–9.

12. Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J
Ethnopharmacol. 2004;94(1):1–23.

13. Marchart E, Krenn L, Kopp B. Quantification of the flavonoid glycosides in
Passiflora incarnata by capillary electrophoresis. Planta Med. 2003;69(5):452–6.

14. Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S. Passiflora
incarnata L.: Ethnopharmacology, clinical application, safety and evaluation
of clinical trials. J Ethnopharmacol. 2013;150(3):791–804.

15. Menghini A, Capuccella M, Mercati V, Mancini L, Buratta M. Flavonoid
contents in Passiflora spp. Pharmacol Res. 1993;27:13–4.

16. Speroni E, Minghetti A. Neuropharmacological activity of extracts from
Passiflora incarnata. Planta Med. 1988;54(6):488.

17. Grundmann O, Wähling C, Staiger C, Butterweck V. Anxiolytic effects of a
passion flower (Passiflora incarnata L.) extract in the elevated plus maze in
mice. Pharmazie. 2009;64(1):63–4.

18. Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F.
Behavioural effects of Passiflora incarnata L. and its indole alkaloid and
flavonoid derivatives and maltol in the mouse. J Ethnopharmacol. 1997;
57(1):11–20.

19. Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of Passiflora
incarnata Linneaus. J Ethnopharmacol. 2001;78(2):165–70.

20. Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground
parts of Passiflora incarnata. Fitoterapia. 2001;72(8):922–6.

21. Nassiri-Asl M, Shariati-Rad S, Zamansoltani F. Anticonvulsant effects of aerial
parts of Passiflora incarnata extract in mice: involvement of benzodiazepine
and opioid receptors. BMC Complement Altern Med. 2007;7(1):26.

22. Dhawan K, Sharma A. Antitussive activity of the methanol extract of
Passiflora incarnata leaves. Fitoterapia. 2002;73(5):397–9.

23. Dhawan K, Kumar S, Sharma A. Aphrodisiac activity of methanol extract of
leaves of Passiflora incarnata Linn. in mice. Phytother Res. 2003;17(4):401–3.

Aman et al. BMC Complementary and Alternative Medicine  (2016) 16:77 Page 14 of 17

dx.doi.org/10.1186/s12906-016-1048-6


24. Dhawan K, Kumar S, Sharma A. Antiasthmatic activity of the methanol
extract of leaves of Passiflora incarnata. Phytother Res. 2003;17(7):821–2.

25. Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity
of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J
Ethnopharmacol. 2012;139(3):801–6.

26. Dhawan K, Kumar S, Sharma A. Reversal of cannabinoids (Δ9-THC) by the
benzoflavone moiety from methanol extract of Passiflora incarnata Linneaus
in mice: a possible therapy for cannabinoid addiction. J Pharm Pharmacol.
2002;54(6):875–81.

27. Dhawan K, Kumar S, Sharma A. Reversal of morphine tolerance and
dependence by Passiflora incarnata-A traditional medicine to combat
morphine addiction. Pharm Biol. 2002;40(8):576–80.

28. Dhawan K, Kumar S, Sharma A. Nicotine reversal effects of the benzoflavone
moiety from Passiflora incarnata Linneaus in mice. Addict Biol. 2002;7(4):435–41.

29. Dhawan K. Drug/substance reversal effects of a novel tri-substituted
benzoflavone moiety (BZF) isolated from Passiflora incarnata Linn.–a brief
perspective. Addict Biol. 2003;8(4):379–86.

30. Patel S, Mohamed Saleem T, Ravi V, Shrestha B, Verma N, Gauthaman K.
Passiflora incarnata Linn: a phytopharmacological review. Int J Green Pharm.
2009;3(4):277.

31. Ingale S, Kasture S. Evaluation of analgesic activity of the leaves of Passiflora
incarnata Linn. Int J Green Pharm. 2012;6(1):36.

32. Akhondzadeh S, Naghavi H, Vazirian M, Shayeganpour A, Rashidi H, Khani M.
Passionflower in the treatment of generalized anxiety: a pilot double-blind
randomized controlled trial with oxazepam. J Clin Pharm Ther. 2001;26(5):363–7.

33. Movafegh A, Alizadeh R, Hajimohamadi F, Esfehani F, Nejatfar M.
Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery
patients: a double-blind, placebo-controlled study. Anesth Analg. 2008;
106(6):1728–32.

34. Schulz H, Jobert M, Hubner W. The quantitative EEG as a screening
instrument to identify sedative effects of single doses of plant extracts in
comparison with diazepam. Phytomedicine. 1998;5(6):449–58.

35. Akhondzadeh S, Kashani L, Mobaseri M, Hosseini S, Nikzad S, Khani M.
Passionflower in the treatment of opiates withdrawal: a double-blind
randomized controlled trial. J Clin Pharm Ther. 2001;26(5):369–73.

36. Akhondzadeh S, Mohammadi M, Momeni F. Passiflora incarnata in the
treatment of attention-deficit hyperactivity disorder in children and
adolescents. Future Medicine. 2005;2(4):609–14.

37. Fahami F, Asali Z, Aslani A, Fathizadeh N. A comparative study on the
effects of Hypericum perforatum and Passion flower on the menopausal
symptoms of women referring to Isfahan city health care centers. Iran J
Nurs Midwifery Res. 2010;15(4):202–7.

38. Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol. 2001;
429(1–3):23–37.

39. Attal N. Neuropathic pain: mechanisms, therapeutic approach, and
interpretation of clinical trials. Continuum. 2012;18(1, Peripheral
Neuropathy):161–75.

40. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML,
et al. Recommendations for the pharmacological management of
neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;
85(3, Supplement):S3–14.

41. Mendell JR, Sahenk Z. Painful sensory neuropathy. N Engl J Med. 2003;
348(13):1243–55.

42. Brunelli B, Gorson KC. The use of complementary and alternative medicines
by patients with peripheral neuropathy. J Neurol Sci. 2004;218(1):59–66.

43. Muthuraman A, Singh N, Jaggi AS. Protective effect of Acorus calamus L. in
rat model of vincristine induced painful neuropathy: an evidence of anti-
inflammatory and anti-oxidative activity. Food Chem Toxicol. 2011;49(10):
2557–63.

44. Kaeidi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M, Rasoulian B,
Hajializadeh Z, et al. Olive (Olea europaea L.) leaf extract attenuates early
diabetic neuropathic pain through prevention of high glucose-induced
apoptosis: In vitro and in vivo studies. J Ethnopharmacol. 2011;136(1):188–96.

45. Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in
chronic constriction injury induced neuropathic pain in rats: an evidence of
anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory
effects. BMC Complement Altern Med. 2011;11(1):24.

46. Garg G, Adams JD. Treatment of neuropathic pain with plant medicines.
Chin J Integr Med. 2012;18(8):565–70.

47. Raaman N. Qualitative phytochemical screening. Phytochemical techniques.
New India Publishing. 2006.

48. Krishnaiah D, Devi T, Bono A, Sarbatly R. Studies on phytochemical constituents
of six Malaysian medicinal plants. J Med Plant Res. 2009;3(2):067–72.

49. Edeoga H, Okwu D, Mbaebie B. Phytochemical constituents of some
Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–8.

50. Dogrul A, Yesilyurt O. Effects of intrathecally administered aminoglycoside
antibiotics, calcium-channel blockers, nickel and calcium on acetic acid-
induced writhing test in mice. General Pharmacol. 1998;30(4):613–6.

51. Subhan F, Abbas M, Rauf K, Arfan M, Sewell RD, Ali G. The role of opioidergic
mechanism in the activity of Bacopa monnieri extract against tonic and acute
phasic pain modalities. Pharmacology Online. 2010;3:903–14.

52. Simiand J, Keane P, Morre M. The staircase test in mice: a simple and
efficient procedure for primary screening of anxiolytic agents.
Psychopharmacology (Berl). 1984;84(1):48–53.

53. Subhan F, Karim N, Gilani AH, Sewell RD. Terpenoid content of Valeriana
wallichii extracts and antidepressant like response profiles. Phytother Res.
2010;24(5):686–91.

54. John Field M, McCleary S, Hughes J, Singh L. Gabapentin and pregabalin,
but not morphine and amitriptyline, block both static and dynamic
components of mechanical allodynia induced by streptozocin in the rat.
Pain. 1999;80(1):391–8.

55. Chaplan S, Bach F, Pogrel J, Chung J, Yaksh T. Quantitative assessment of
tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.

56. Ali G, Subhan F, Abbas M, Zeb J, Shahid M, Sewell RD. A streptozotocin-
induced diabetic neuropathic pain model for static or dynamic mechanical
allodynia and vulvodynia: validation using topical and systemic gabapentin.
Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1129–40.

57. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects
of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;
2(1):7–14.

58. Verma PR, Joharapurkar AA, Chatpalliwar VA, Asnani AJ. Antinociceptive
activity of alcoholic extract of Hemidesmus indicus R. Br. in mice. J
Ethnopharmacol. 2005;102(2):298–301.

59. Sulaiman MR, Hussain M, Zakaria ZA, Somchit M, Moin S, Mohamad A, et al.
Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract.
Fitoterapia. 2008;79(7):557–61.

60. Sałat K, Więckowska A, Więckowski K, Höfner GC, Kamiński J, Wanner KT,
et al. Synthesis and pharmacological properties of new GABA uptake
inhibitors. Pharmacol Rep. 2012;64(4):817–33.

61. Britto GF, Subash K, Rao NJ, Cheriyan BV, Kumar SV. A synergistic approach
to evaluate the anti-nociceptive activity of a GABA agonist with opioids in
albino mice. J Clin Diagn Res. 2012;6:682–7.

62. Dhawan K, Kumar S, Sharma A. Evaluation of central nervous system effects
of Passiflora incarnata in experimental animals. Pharm Biol. 2003;41(2):87–91.

63. Yaksh T. Pharmacology and mechanisms of opioid analgesic activity. Acta
Anaesthesiol Scand. 1997;41(1):94–111.

64. McCarson KE, Enna S. GABA pharmacology: the search for analgesics.
Neurochem Res. 2014;1–16.

65. Elsas S-M, Rossi D, Raber J, White G, Seeley C-A, Gregory W, et al. Passiflora
incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal
neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo,
varying with extraction method. Phytomedicine. 2010;17(12):940–9.

66. Appel K, Rose T, Fiebich B, Kammler T, Hoffmann C, Weiss G. Modulation of
the γ-aminobutyric acid (GABA) system by Passiflora incarnata L. Phytother
Res. 2011;25(6):838–43.

67. DeFeudis F. Central GABA‐ergic systems and analgesia. Drug Dev Res. 1983;
3(1):1–15.

68. Gries DA, Condouris GA, Shey Z, Houpt M. Anxiolytic-like action in mice
treated with nitrous oxide and oral triazolam or diazepam. Life Sci. 2005;
76(15):1667–74.

69. Rolland A, Fleurentin J, Lanhers M-C, Younos C, Misslin R, Mortier F, et al.
Behavioural effects of the American traditional plant Eschscholzia californica:
Sedative and anxiolytic properties. Planta Med. 1991;57(03):212–6.

70. Sampath C, Holbik M, Krenn L, Butterweck V. Anxiolytic effects of fractions
obtained from Passiflora incarnata L. in the elevated plus maze in mice.
Phytother Res. 2011;25(6):789–95.

71. Brown E, Hurd NS, McCall S, Ceremuga TE. Evaluation of the anxiolytic
effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J.
2007;75(5):333–7.

72. Grundmann O, Wang J, McGregor GP, Butterweck V. Anxiolytic activity of a
phytochemically characterized Passiflora incarnata extract is mediated via
the GABAergic system. Planta Med. 2008;74(15):1769–73.

Aman et al. BMC Complementary and Alternative Medicine  (2016) 16:77 Page 15 of 17



73. Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao J-X, Hökfelt T, Xu X-J.
Central inhibitory dysfunctions: mechanisms and clinical implications. Behav
Brain Sci. 1997;20(03):420–5.

74. Hyun Hwang J,L, Yaksh T. The effect of spinal GABA receptor agonists on
tactile allodynia in a surgically-induced neuropathic pain model in the rat.
Pain. 1997;70(1):15–22.

75. Giardina WJ, Decker MW, Porsolt RD, Roux S, Collins SD, Kim DJ, et al. An
evaluation of the GABA uptake blocker tiagabine in animal models of
neuropathic and nociceptive pain. Drug Dev Res. 1998;44(2‐3):106–13.

76. Urban MO, Ren K, Park KT, Campbell B, Anker N, Stearns B, et al. Comparison
of the antinociceptive profiles of gabapentin and 3-methylgabapentin in rat
models of acute and persistent pain: Implications for mechanism of action.
J Pharmacol Exp Ther. 2005;313(3):1209–16.

77. Przewlocki R, Przewlocka B. Opioids in neuropathic pain. Curr Pharm Des.
2005;11(23):3013–25.

78. Arnér S, Meyerson BA. Lack of analgesic effect of opioids on neuropathic
and idiopathic forms of pain. Pain. 1988;33(1):11–23.

79. Guan Y, Johanek LM, Hartke TV, Shim B, Tao Y-X, Ringkamp M, et al.
Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain
in rats after L5 spinal nerve injury. Pain. 2008;138(2):318–29.

80. Eisenberg E, McNicol ED, Carr DB. Efficacy of mu‐opioid agonists in the
treatment of evoked neuropathic pain: systematic review of randomized
controlled trials. Eur J Pain. 2006;10(8):667.

81. Desmeules JA, Kayser V, Guilbaud G. Selective opioid receptor agonists
modulate mechanical allodynia in an animal model of neuropathic pain.
Pain. 1993;53(3):277–85.

82. Felipe C, Gonzalez GG, Gallar J, Belmonte C. Quantification and
immunocytochemical characteristics of trigeminal ganglion neurons projecting
to the cornea: effect of corneal wounding. Eur J Pain. 1999;3(1):31–9.

83. Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, et al. Reversal
of pathological pain through specific spinal GABAA receptor subtypes.
Nature. 2008;451(7176):330–4.

84. Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in
laminae I–III of the spinal cord dorsal horn contributes to reduced
GABAergic tone and neuropathic pain after spinal cord injury. J
Neurotrauma. 2010;27(4):729–37.

85. Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, et al. Reactive oxygen
species contribute to neuropathic pain by reducing spinal GABA release.
Pain. 2011;152(4):844–52.

86. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial
peripheral nerve injury promotes a selective loss of GABAergic inhibition in the
superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.

87. Farnsworth NR. Biological and phytochemical screening of plants. J Pharm
Sci. 1966;55(3):225–76.

88. Dhawan K, Kumar S, Sharma A. Comparative biological activity study on
Passiflora incarnata and P. edulis. Fitoterapia. 2001;72(6):698–702.

89. Raffaelli A, Moneti G, Mercati V, Toja E. Mass spectrometric characterization
of flavonoids in extracts from Passiflora incarnata. J Chromatogr A. 1997;
777(1):223–31.

90. Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, Lima TCM, et al.
Neuropharmacological evaluation of the putative anxiolytic effects of
Passiflora edulis Sims, its sub‐fractions and flavonoid constituents. Phytother
Res. 2006;20(12):1067–73.

91. Sena LM, Zucolotto SM, Reginatto FH, Schenkel EP, De Lima TCM.
Neuropharmacological activity of the pericarp of Passiflora edulis flavicarpa
degener: putative involvement of C-glycosylflavonoids. Exp Biol Med. 2009;
234(8):967–75.

92. Herrera-Ruiz M, Zamilpa A, González-Cortazar M, Reyes-Chilpa R, León E,
García M, et al. Antidepressant effect and pharmacological evaluation of
standardized extract of flavonoids from Byrsonima crassifolia. Phytomedicine.
2011;18(14):1255–61.

93. Dhawan K, Dhawan S, Chhabra S. Attenuation of benzodiazepine dependence
in mice by a tri-substituted benzoflavone moiety of Passiflora incarnata
Linneaus: a non-habit forming anxiolytic. J Pharm Pharm Sci. 2003;6(2):215–22.

94. Dhawan K, Kumar S, Sharma A. Suppression of alcohol-cessation-oriented
hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linneaus
in mice. J Ethnopharmacol. 2002;81(2):239–44.

95. Higgs J, Wasowski C, Loscalzo LM, Marder M. In vitro binding affinities of a
series of flavonoids for μ-opioid receptors. Antinociceptive effect of the
synthetic flavonoid 3, 3-dibromoflavanone in mice. Neuropharmacology.
2013;72:9–19.

96. Willain Filho A, Cechinel Filho V, Olinger L, de Souza MM. Quercetin: Further
investigation of its antinociceptive properties and mechanisms of action.
Arch Pharm Res. 2008;31(6):713–21.

97. Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL.
Neuroprotective effect of naringin by modulation of endogenous
biomarkers in streptozotocin induced painful diabetic neuropathy.
Fitoterapia. 2012;83(4):650–9.

98. Meotti FC, Missau FC, Ferreira J, Pizzolatti MG, Mizuzaki C, Nogueira CW,
et al. Anti-allodynic property of flavonoid myricitrin in models of persistent
inflammatory and neuropathic pain in mice. Biochem Pharmacol. 2006;
72(12):1707–13.

99. Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal
hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J
Pharmacol. 2006;536(3):256–61.

100. Gavasheli N, Moniavo I, Eristavi L. Flavonoids from Passiflora incarnata. Chem
Nat Compounds. 1974;10(1):99.

101. Feng C, Zhang L, Liu X. Progress in research of aldose reductase inhibitors
in traditional medicinal herbs. Zhongguo Zhong Yao Za Zhi. 2005;30(19):
1496–500.

102. Galuppo M, Giacoppo S, Bramanti P, Mazzon E. Use of natural compounds
in the management of diabetic peripheral neuropathy. Molecules. 2014;
19(3):2877–95.

103. Anjaneyulu M, Chopra K. Quercetin, a bioflavonoid, attenuates thermal
hyperalgesia in a mouse model of diabetic neuropathic pain. Prog
Neuropsychopharmacol Biol Psychiatry. 2003;27(6):1001–5.

104. Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanuš LO, Boger DL, et al.
Behavioral evidence for the interaction of oleamide with multiple
neurotransmitter systems. J Pharmacol Exp Ther. 2001;299(1):332–42.

105. Laposky AD, Homanics GE, Basile A, Mendelson WB. Deletion of the GABAA
receptor β3 subunit eliminates the hypnotic actions of oleamide in mice.
Neuroreport. 2001;12(18):4143–7.

106. Yost CS, Hampson AJ, Leonoudakis D, Koblin DD, Bornheim LM, Gray AT.
Oleamide potentiates benzodiazepine-sensitive gamma-aminobutyric acid
receptor activity but does not alter minimum alveolar anesthetic
concentration. Anesth Analg. 1998;86(6):1294–300.

107. Verdon B, Zheng J, Nicholson RA, Ganelli CR, Lees G. Stereoselective
modulatory actions of oleamide on GABAA receptors and voltage-gated
Na + channels in vitro: a putative endogenous ligand for depressant drug
sites in CNS. Br J Pharmacol. 2000;129(2):283–90.

108. Thomas EA, Cravatt BF, Sutcliffe JG. The endogenous lipid oleamide
activates serotonin 5-HT7 neurons in mouse thalamus and hypothalamus. J
Neurochem. 1999;72(6):2370–8.

109. Boger DL, Patterson JE, Jin Q. Structural requirements for 5-HT2A and 5-HT1A
serotonin receptor potentiation by the biologically active lipid oleamide.
Proc Natl Acad Sci. 1998;95(8):4102–7.

110. Soria-Gómez E, Márquez-Diosdado MI, Montes-Rodríguez CJ, Estrada-
González V, Prospéro-García O. Oleamide administered into the nucleus
accumbens shell regulates feeding behaviour via CB1 and 5-HT2C receptors.
Int J Neuropsychopharmacol. 2010;13(9):1247–54.

111. Thomas EA, Carson MJ, Neal MJ, Sutcliffe JG. Unique allosteric regulation of
5-hydroxytryptamine receptor-mediated signal transduction by oleamide.
Proc Natl Acad Sci. 1997;94(25):14115–9.

112. Nicholson RA, Zheng J, Ganellin CR, Verdon B, Lees G. Anesthetic-like
interaction of the sleep-inducing lipid oleamide with voltage-gated sodium
channels in mammalian brain. Anesthesiology. 2001;94(1):120–8.

113. Leggett JD, Aspley S, Beckett S, D’Antona A, Kendall D. Oleamide is a
selective endogenous agonist of rat and human CB1 cannabinoid receptors.
Br J Pharmacol. 2004;141(2):253–62.

114. Walker JM, Krey JF, Chu CJ, Huang SM. Endocannabinoids and related fatty
acid derivatives in pain modulation. Chem Phys Lipids. 2002;121(1):159–72.

115. Yu X, Zhao M, Liu F, Zeng S, Hu J. Identification of 2, 3-dihydro-3, 5-
dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–
histidine Maillard reaction products. Food Res Int. 2013;51(1):397–403.

116. Čechovská L, Cejpek K, Konečný M, Velíšek J. On the role of 2, 3-dihydro-3,
5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes.
Eur Food Res Technol. 2011;233(3):367–76.

117. Rathenberg J, Kittler JT, Moss SJ. Palmitoylation regulates the clustering and
cell surface stability of GABA A receptors. Mol Cell Neurosci. 2004;26(2):251–7.

118. Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al.
Neuroprotective effect of vitamin E supplementation in patients treated
with cisplatin chemotherapy. J Clin Oncol. 2003;21(5):927–31.

Aman et al. BMC Complementary and Alternative Medicine  (2016) 16:77 Page 16 of 17



119. Argyriou A, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al.
Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a
randomized controlled trial. Neurology. 2005;64(1):26–31.

120. Cameron N, Eaton S, Cotter M, Tesfaye S. Vascular factors and metabolic
interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;
44(11):1973–88.

121. Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. Int Rev
Neurobiol. 2002;50:205–28.

122. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic
neuropathies a statement by the American Diabetes Association. Diabetes
Care. 2005;28(4):956–62.

123. Kalra B, Kalra S, Bajaj S. Vulvodynia: an unrecognized diabetic neuropathic
syndrome. Indian J Endocrinol Metab. 2013;17(5):787.

124. Kingdon J. Vulvodynia. Nurs Womens Health. 2009;13(1):48–58.
125. Haefner HK, Collins ME, Davis GD, Edwards L, Foster DC, Hartmann EDH, et

al. The vulvodynia guideline. J Low Genit Tract Dis. 2005;9(1):40–51.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Aman et al. BMC Complementary and Alternative Medicine  (2016) 16:77 Page 17 of 17


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Chemicals
	Preparation of Passiflora incarnata methanolic extract
	Phytochemical analysis
	Animals
	Abdominal constriction assay
	Hot plate test
	Anxiolytic activity (Staircase test)
	Locomotor activity
	Streptozotocin induced neuropathic pain
	Induction of mechanical allodynia and vulvodynia

	Treatment schedule
	Assessment of static and dynamic allodynia
	Assessment of static and dynamic vulvodynia
	Statistical analysis

	Results
	Phytochemical analysis of Passiflora incarnata
	Antinociceptive activity of Passiflora incarnata
	Abdominal constriction assay (tonic visceral chemically-induced nociception)
	Hot plate test (acute phasic thermal nociception)

	Anxiolytic-like activity of Passiflora incarnata
	Sedative activity of Passiflora incarnata
	Locomotor activity

	Effect of Passiflora incarnata on mechanical allodynia and vulvodynia

	Discussion
	Conclusion
	Additional file
	Competing interests
	Authors’ contributions
	Author details
	References



