
Zuo et al. BMC Complementary and Alternative Medicine  (2015) 15:425 
DOI 10.1186/s12906-015-0938-3
RESEARCH ARTICLE Open Access
In vitro synergism of magnolol and
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agents against clinical isolates of
methicillin-resistant Staphylococcus aureus
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Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious
therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial
agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol
(HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this
study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays.

Methods: The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal
inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by
broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments.

Results: ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with
potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional
antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs
decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations
decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which
exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones
(levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD,
the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant
synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with
antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of
MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also
showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h
incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and
HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25.

Conclusion: ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of
MRSA and warrant further pharmacological investigation.
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Fig. 1 The structures of magnolol (ML) and honokiol (HL)
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Background
The opportunistic pathogen Staphylococcus aureus (SA)
is a leading cause of bacterial infections of people, caus-
ing a broad spectrum of pathology ranging from com-
mon skin infections to deep-seated fatal disease [1].
Antibiotic treatment of SA has once contributed greatly
to human health for decades. However, due to long, wide
and irrational applications of antibacterial agents in
treatments in various fields other than in the clinic,
methicillin-resistant Staphylococcus aureus (MRSA) has
evolved as a problematic pathogen and has posed a ser-
ious therapeutic challenge in clinic [1, 2]. Nowadays,
MRSA infections can be monitored both in hospitals
[healthcare-acquired /associated (HA) MRSA] and com-
munity [community-acquired/associated (CA) MRSA].
The livestock-associated MRSA [(LA) MRSA] has also
occurred [3]. MRSA is able to produce resistance to
nearly all common classes of antibiotics including β-
lactams, aminoglycosides, macrolides, tetracyclines and
quinolones, and even the vancomycin-resistant S. aureus
(VRSA) has also been reported [4]. The decreasing ef-
fectiveness of conventional drugs is continuously haunt-
ing both clinicians and drug researchers, and the critical
shortage of new antibiotics in development against MRSA
and other multidrug-resistant bacteria is of great concern
worldwide. New targets with novel strategy of therapy and
mechanism of action for development of antibacterial
agents against MRSA are urgently needed [5].
Plant natural resources have been demonstrated to pos-

sess great chemical and biological diversities and promising
findings of antibacterial phytochemicals which showed not
only anti-MRSA activity alone, but also synergistic poten-
tials when they were used in combination with conven-
tional antibacterial agents against MRSA [6–10]. In recent
years, we are devoting efforts to search for novel phyto-
chemicals that showed synergy with conventional antibac-
terial agents against MRSA from medicinal plant sources,
especially from the traditional Chinese medicines (TCM)
[11–13]. We found two diallylbiphenols, i.e. magnolol (ML)
and honokiol (HL) are such phytochemicals contained in
the Chinese crude drug Hou-po, the stem or root bark of
Magnolia officinalis Rehd. et Wils. (Magnoliaceae) [14].
Hou-po is an important species in TCM [14]. It has

been traditionally used for respiration, digestion and in-
fection related ailments like cough, diarrhea, and allergic
rhinitis [14]. Modern pharmacological reports also dem-
onstrated its antimicrobial, anti-inflammatory and anal-
gesic, antianxiety and antidepressant, antitumor and
anticoagulant effects as well as myocardial/cerebral ische-
mia protections [15]. ML and HL are two main phenolic
constituents primarily isolated from Hou-po and also
found in other Magnolia sp., together with other non-
phenolic constituents such as alkaloids and essential oils
[16–18]. The antimicrobial effects of Hou-po extracts on
Bacillus anthracis, S. aureus and other pathogens were
found as early as six decades ago [19–21]. Previous reports
on antimicrobial activities of ML and HL and their syn-
thetic derivatives include antibacterial [22–31], antifungal
[32–34], antiviral [35] and nemicidal [36] activities. Al-
though their antibacterial activities against MRSA and
vancomycin-resistant enterococci (VRE) have been re-
ported [37, 38], their potential for combined action on
conventional antibacterial agents against MRSA has not
been studied. Only the synergy of honokiol with flucona-
zole against clinical isolates of azole-resistant Candida
albicans [39], and synergistic effect of lysozyme on
bactericidal activity of magnolol and honokiol against
a cariogenic bacterium of Streptococcus mutans OMZ
176 [40] including their potentiation of the antitumor
agents [41–46] were reported. In this paper, we will
show the potential synergistic effects of ML and HL
in combination with conventional antibacterial agents
against clinical MRSA strains through the checkerboard
and time-kill curve methods.

Methods
Antimicrobial agents and disks
The eight antibacterial agents, i.e. amikacin (AMK)
(Jiangsu Wuzhong Pharmaceutical Group Co., Ltd.,
Suzhou, China); Etilmicin (ETM) (Wuxi Jimin kexin
Shanhe Pharmaceutical Co., Ltd.); gentamicin (GEN)
(Guangzhou Baiyunshan Tianxin Pharmaceutical Co.,
Ltd., Guangzhou, China); Piperacillin (PIP) (Harbin
Pharmaceutical Group Co., Ltd., Harbin, China);
Norfloxacin (NOR) and Ciprofloxacin (CIP) (Sichuan
Kelun Pharmaceutical Co., Ltd., Chengdu, China);
Levofloxacin (LEV) (Yangzhijiang pharmaceutical Co., Ltd.,
Taizhou, China); Fosfomycin (FOS) (Northeast Pharma-
ceutical Group Co., Ltd., Shenyang, China). magnolol (ML)
and honokiol (HL) (HPLC>98 %; Xian Xiaocao Science and
Technology Co., Ltd., Xian, China) (Fig. 1). Vancomycin
(VAN) (Eli Lilly Japan K. K., Seishin Laboratories)
was used as the positive control agent. Cefoxitin (cfx,
0.03 mg) and other antibiotic impregnated disks were
purchased from Beijing Tiantan biological products
Co., Ltd., China.
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Bacterial strains and media
Ten MRSA strains (MRSA 01–10) were isolated and
characterized from the infectious sputum sample of critic-
ally ill patients in KGH as previously reported [11–13].
The strains were determined with zone diameter (ZD) ≤ 21
mm against cefoxitin disk and the properties of susceptible
(S), intermediate (I) and resistant (R) to antibacterial agents
were determined according to the ZD Interpretive Criteria
of Table 2C in 2012 CLSI by comparison with the ZD of
corresponding antibacterial agents (Table 1) [47]. The
presence of mecA gene and SCCmec genotypes were
determined by multiplex PCR methods in Kunming
Institute of Virology, PLA, China, as previously re-
ported [48]. The control strain for MRSA was S.
aureus (ATCC 25923; methicillin-susceptible S. aureus
(MSSA)) which was purchased from the Beijing Tiantan
Pharmaceutical and Biological Technology Co., Ltd.,
China. Standard Mueller-Hinton agar and broth (MHA
and MHB, Tianhe Microbial Agents Co., Hangzhou,
China) were used as bacterial culture media. Colony
counts were determined using MHA plates. MHB was
used for quantitative susceptibility testing and dynamic
time–kill experiments.

Susceptibility testing
The test of susceptibility spectrum of the ten clinical
MRSA strains to conventional antibacterial agents was
performed by disk diffusion test following the CLSI
guideline [47, 49, 50]. MICs/MBCs of ML and HL
were determined by standardized broth microdilution
techniques with inoculums of 5 × 105 CFU/mL ac-
cording to CLSI guidelines and incubated at 35 °C for
24 h [51–53]. The solvent used for dissolving the
compounds and the antibiotics was MHB (or containing
the final concentration of less than 5 % of dimethyl
sulphoxide).
Table 1 Resistance spectrum of the ten clinical isolates of MRSA stra

Strain Resistant

MRSA 008 PEN, AMP, OXA, CFZ, Cfx, P/T, ERY, AZM, CIP, LEV, NOR, CL

MRSA 082 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, ClA,

MRSA 098 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 111 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 135 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 144 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 166 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 187 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 189 PEN, AMP, OXA, CFZ, Cfx, FUR, CPZ/S, P/T, ERY, AZM, CIP,

MRSA 321 PEN, AMP, OXA, CFZ, Cfx, FUR, P/T, ERY, AZM, CIP, LEV, NO

PEN Penicillin, AMP Ampicillin, OXA Oxacillin, CFZ Cefazolin, Cfx Cefoxitin, FUR Cefuroxime
ERY Erythromycin, AZM Azithromycin, CIP Ciprofloxacin, GAT Gatifloxacin, LEV Levofloxacin
TEI Teicoplanin, VAN Vancomycin
Synergy testing
Potential interactions of ML and HL in combination
with various antibiotics against MRSA were evaluated by
determination of fractional inhibitory concentration indices
(FICIs) and time-kill curves through using the checker-
board and dynamic time-kill methods as described previ-
ously [12, 13]. The bacteriostatic interaction mode was
judged by FICIs as follows: FICI ≤ 0.5, synergy; 0.5 < FICI ≤
1, additive; and 1 < FICI < 2, indifferent (or no effect) and
FICI ≥ 2, antagonism [54, 55]. The bactericidal interaction
mode was judged by the increased killing colony counts in
log10 CFU/mL at 24 h incubation (△LC24) as follows:
△LC24 ≥ 2 log10 CFU/mL, synergy; △LC24 = 1–2 log10
CFU/mL, additive; △LC24 = ±1 log10 CFU/mL, indifferent;
△LC24 > −1 log10 CFU/mL, antagonism; where the △LC24

was calculated through the killing by a combination
(LC24(co.)) deducting that by the most active single drug
(LC24(si.)) in the combination, i.e. △LC24 = LC24(co.) -
LC24(si.) [56].

Statistical analysis
All the experiments were performed in triplicate. Data
are expressed as the mean ± standard error. Statistical
analyses were performed using the Statistical Package
for the Social Sciences (SPSS 20.0) software (SPSS Inc.,
Chicago, IL, USA). Data were analysed by Kruskal–
Wallis test and the significant differences between groups
were analysed by Dunnett’s test. Statistical significance
was accepted at a level of p < 0.01.

Results
Antimicrobial effects of ML and HL
The MICs/MBCs of ML, HL and eight conventional
antibacterial agents alone against MSSA and MRSA are
shown in Table 2. As a whole, ML and HL appeared as
two moderate bactericidal agents against both MSSA
ins

Intermediate Susceptible

I VAN, LZD, TEI

CIP, LEV, NOR, CLI, RIF FOS VAN, LZD, TEI

LEV, NOR, CLI, RIF VAN, LZD, TEI

LEV, NOR, CLI, RIF VAN, LZD, TEI

LEV, NOR, CLI, RIF VAN, LZD, TEI, FOS

LEV, NOR, CLI, RIF VAN, LZD, TEI

LEV, NOR, CLI, RIF, P/T VAN, LZD, TEI, FOS

LEV, NOR, CLI, RIF VAN, LZD, TEI, FOS

LEV, NOR, CLI, RIF VAN, LZD, TEI, FOS

R, CLI, CPZ/S, RIF GAT, CTH, FOS VAN

, CTH Cefathiamidine, CPZ/S Cefoperazone/sulbactam, P/T Piperacillin/tazobactam,
, CLI clindamycin, RIF Rifampicin, CLA Clarithromycin, FOS Fosfomycin, LZD Linezolid,



Table 2 MICs/MBCs (mg/L) of magnolol (ML), honokiol (HL) and
conventional antibacterial agents against MSSA and the ten
MRSA strainsa

Agentb MSSA MRSA (n = 10)

Range 50%c 90%d

ML* 32/32 8 ~ 64*/16 ~ 128 16/16 64/64

HL* 16/32 16 ~ 32*/16 ~ 64 16/64 32/64

ETM 8/8 4 ~ 16/8 ~ 32 8/8 16/16

AMK 16/32 32 ~ 128*/64 ~ 256 64/128 64/256

GEN 16/32 16 ~ 128*/64 ~ 256 64/128 64/128

LEV 16/32 128 ~ 256/256 ~ 512 128/512 256/512

CIP 32/64 256 ~ 512/256 ~ 1024 256/512 512/1024

NOR 32/64 256 ~ 512/256 ~ 1024 256/512 512/1024

PIP 64/64 128 ~ 256/256 ~ 512 128/256 256/512

FOS 64/128 128 ~ 256/256 ~ 512 128/512 256/512

VAN 1/1 2/2 2/2 2/2
aMSSA Methicillin-susceptible Staphylococcus aureus (ATCC25923), MRSA
Methicillin-resistant Staphylococcus aureus
bML Magnolol, HL Honokiol, AMK Amikacin, ETM Etilmicin, GEN Gentamicin,
PIP Piperacillin, CIP Ciprofloxacin, LEV Levofloxacin, FOS Fosfomycin, NOR
Norfloxacin, VAN Vancomycin
c50 % = MIC50/MBC50, i.e. the minimal inhibitory and bactericidal
concentrations required to inhibit and kill 50 % of the strains, respectively
b90 % = MIC90/MBC90, i.e. the minimal inhibitory and bactericidal
concentrations required to inhibit and kill 90 % of the strains, respectively
*p > 0.01
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and MRSA. The two compounds showed varied MIC/
MBC of 16 ~ 64 mg/L against MSSA as most of the
tested antibacterial agents, but they showed more potent
activity than these agents against MRSA, with MIC90/
MBC90 of 64/64 and 32/64 mg/L, respectively. HL
showed the same activity as AMK, GEN and LEV with
MIC/MBC of 16/32 mg/L against MSSA. The anti-
MRSA potency of ML, HL and the eight agents followed
the order of VAN > ETM > HL > ML > GEN > AMK >
LEV (PIP, FOS) > CIP (NOR) judged by the values of
MIC90/MBC90. Therefore, the antibacterial activity of
the two compounds all showed more potent against
MRSA than most of the conventional antibacterial agents
with the exception of ETM and VAN (Table 2).

Synergy of ML and HL in combination with antibacterial
agents against MRSA
Table 3 shows the different degree of synergistic interac-
tions of ML and HL in combination with the eight anti-
bacterial agents against the ten clinical MRSA isolates.
There are three to ten MRSA strains that showed synergy
with FICIs between 0.25 ~ 0.5, leading to the combined
MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for
ML (HL) and the agents, respectively. MIC50 of the com-
binations decreased from 16 mg/L to 1 ~ 4 mg/L for ML
(HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacter-
ial agents, which exhibited a broad spectrum of synergistic
action with aminoglycosides (amikacin, etilmicin and
gentamicin), floroquinolones (levofloxacin, ciprofloxa-
cin and norfloxacin), fosfomycin and piperacillin. The
times of dilution (TOD, the extent of decreasing in
MIC value) were determined up to 16 for the com-
bined MIC. The more significant synergy after com-
bining was determined as ML (HL) with AMK, ETM,
GEN and FOS. Therefore, ML and HL showed generally
the same synergistic bacteriostatic effects on the tested
antibacterial agents. Moreover, ML (HL) combined with
antibacterial agents did not show antagonistic effects on
any of the ten MRSA strains. There were only 1 ~ 2
strains that showed indifference.
To further evaluate the dynamic bactericidal effects of

ML (HL) in combination with the antibacterial agents, the
time-kill curve experiments were performed and the re-
sults are shown in Table 4 and Figs. 2 and 3. Eight of the
combinations showed synergy in dynamic kill effects, with
the order of potency as HL + ETM > HL + LEV >ML +
ETM > HL + AMK > HL + FOS > HL + GEN > ML +
AMK > ML + FOS. The rest of the four combinations
ML + LEV, ML + CIP, ML + GEN and HL + CIP
showed additive effects (Table 4). All the combinations
showed better bactericidal activity against MRSA than
any of single ML (HL) or the agents at 24 h incubation.
The bactericidal efficiency of the combinations gener-
ally lasted longer than that of the single agents (Figs. 2
and 3). The more significant combinations were deter-
mined as HL + ETM, HL + LEV and ML + ETM, with
△LC24 of 2.08 ~ 2.25 (Table 4). The combinations of
antibacterial agents with HL showed more significant
killing effects than those with ML for a same antibacterial
agent. For example, the combination of HL + LEV showed
synergy but the combination of ML + LEV showed only
additively. Therefore, HL is a more optimistic agent for
bactericidal potentiation of the effect of conventional
antibacterial agents (Table 4).

Reversal of MRSA resistance to amikacin and gentamicin
by ML and HL
Besides the synergy effectiveness, the combination of
ML (HL) with amikacin (AMK) led MICs (mg/L) of
AMK to decrease markedly even to reverse the MRSA
resistance to AMK by the MIC Interpretive Criteria of
CLSI Performance Standards, i.e. MIC ≤16 mg/L (sus-
ceptible), MIC =32 mg/L (intermediate), MIC ≥64 mg/L
(resistant) [47]. There is an equivalent eight strains of
MRSA (n = 10) that showed MICs ≤16 mg/L against
AMK when it was used in combination with ML and
HL, respectively (p <0.01) (Table 3 and Fig. 4). Similarly,
three strains of MRSA against GEN (MIC ≤4 mg/L (sus-
ceptible), MIC =8 mg/L (intermediate), MIC ≥16 mg/L
(resistant)) also showed reversal interaction in combin-
ation with ML (HL) (Table 3) [47].



Table 3 MICs (mg/L) of magnolol (ML) and honokiol (HL) used alone and in combination with antibacterial agents against the ten
MRSA strains

Combinationa Effect MIC (mg/L) FICIc Interaction (n)d

Alone Combined TODb Syn Add Ind

ML + AMK* Range 8 + 32 ~ 32 + 128 2 + 4 ~ 8 + 32 8 + 16 ~ 2 + 2 0.375 ~ 0.75 8 2 0

50 % 16 + 64 2 + 8 4 + 4 0.5

90 % 16 + 64 4 + 32 4 + 4 0.625

ML + ETM Range 8 + 4 ~ 32 + 16 1 + 1 ~ 8 + 4 16 + 8 ~ 2 + 4 0.313 ~ 0.75 8 2 0

50 % 16 + 8 2 + 2 4 + 4 0.375

90 % 16 + 16 4 + 2 2 + 4 0.75

ML + GEN* Range 8 + 16 ~ 32 + 128 1 + 4 ~ 16 + 32 16 + 8 ~ 1 + 2 0.25 ~ 1.25 7 2 1

50 % 16 + 64 2 + 8 8 + 4 0.5

90 % 16 + 64 4 + 32 2 + 2 1

ML + FOS Range 8 + 128 ~ 32 + 256 2 + 16 ~ 16 + 128 8 + 8 ~ 2 + 1 0.25 ~ 1.5 7 2 1

50 % 16 + 128 4 + 32 4 + 8 0.375

90 % 16 + 256 8 + 64 2 + 4 0.75

ML + CIP Range 8 + 256 ~ 32 + 512 1 + 32 ~ 16 + 512 16 + 8 ~ 2 + 1 0.25 ~ 1.5 5 4 1

50 % 16 + 256 4 + 64 4 + 8 0.5

90 % 16 + 512 8 + 256 2 + 2 0.75

ML + LEV Range 8 + 128 ~ 32 + 256 2 + 16 ~ 16 + 128 8 + 8 ~ 1 + 1 0.25 ~ 1.5 4 4 2

50 % 16 + 128 4 + 32 4 + 8 0.625

90 % 16 + 256 8 + 128 2 + 2 1.25

ML + NOR Range 8 + 128 ~ 32 + 256 2 + 16 ~ 16 + 128 8 + 8 ~ 1 + 1 0.375 ~ 1.5 4 4 2

50 % 16 + 128 4 + 64 4 + 4 0.625

90 % 16 + 256 8 + 128 2 + 2 1.25

ML + PIP Range 8 + 128 ~ 32 + 256 2 + 32 ~ 8 + 128 4 + 8 ~ 2 + 1 0.375 ~ 1.5 4 4 2

50 % 16 + 128 4 + 32 4 + 4 0.75

90 % 16 + 256 8 + 128 2 + 1 1.25

HL + ETM Range 8 + 4 ~ 16 + 16 1 + 1 ~ 4 + 2 8 + 8 ~ 4 + 4 0.25 ~ 0.5 10 0 0

50 % 16 + 8 2 + 2 8 + 4 0.375

90 % 16 + 16 4 + 2 4 + 4 0.5

HL + AMK* Range 8 + 32 ~ 16 + 128 1 + 4 ~ 4 + 32 8 + 8 ~ 4 + 2 0.25 ~ 0.75 9 1 0

50 % 16 + 64 2 + 8 8 + 4 0.375

90 % 16 + 64 4 + 32 4 + 4 0.5

HL + GEN* Range 8 + 16 ~ 16 + 128 1 + 2 ~ 4 + 32 8 + 8 ~ 4 + 2 0.25 ~ 0.75 8 2 0

50 % 16 + 64 2 + 16 8 + 4 0.375

90 % 16 + 64 4 + 32 4 + 2 0.625

HL + FOS Range 8 + 128 ~ 16 + 256 2 + 8 ~ 8 + 128 8 + 3 ~ 21 + 2 0.25 ~ 1.25 7 2 1

50 % 16 + 128 4 + 32 4 + 4 0.5

90 % 16 + 256 8 + 64 2 + 2 1

HL + CIP Range 8 + 256 ~ 16 + 512 2 + 16 ~ 8 + 512 8 + 16 ~ 2 + 1 0.25 ~ 1.5 6 3 1

50 % 16 + 256 2 + 64 4 + 4 0.5

90 % 16 + 512 8 + 256 2 + 2 0.75

HL + LEV Range 8 + 128 ~ 16 + 256 2 + 16 ~ 16 + 64 8 + 8 ~ 1 + 4 0.25 ~ 1.25 5 4 1

50 % 16 + 128 4 + 32 4 + 8 0.5

Zuo et al. BMC Complementary and Alternative Medicine  (2015) 15:425 Page 5 of 10



Table 3 MICs (mg/L) of magnolol (ML) and honokiol (HL) used alone and in combination with antibacterial agents against the ten
MRSA strains (Continued)

90 % 16 + 256 8 + 32 2 + 4 1.125

HL + PIP Range 8 + 128 ~ 16 + 256 1 + 16 ~ 16 + 128 8 + 8 ~ 1 + 1 0.25 ~ 1.5 5 3 2

50 % 16 + 128 2 + 32 8 + 4 0.5

90 % 16 + 256 8 + 128 2 + 2 1.25

HL + NOR Range 8 + 128 ~ 16 + 256 1 + 16 ~ 8 + 256 8 + 8 ~ 1 + 1 0.25 ~ 1.5 3 5 2

50 % 16 + 128 4 + 64 4 + 4 0.75

90 % 16 + 256 8 + 128 2 + 2 1.25
aML Magnolol, HL Honokiol, AMK Amikacin, FOS Fosfomycin, LEV Levofloxacin, ETM Etilmicin, PIP Piperacillin, CIP Ciprofloxacin, NOR Norfloxacin, All data on the left
side of “+” belong to ML or HL, and the data on the right side of “+” belong to the conventional antibacterial agents, for example, “ML + AMK” means ML
combined with AMK. bTOD Times of dilution = MICAlone /MICCombined, ranged from the maximum to the minimum. cFICI Fractional inhibitory concentration index,
dAdd Additivity (0.5 < FICI ≤ 1), Ind Indifference (1 < FICI ≤ 2), Syn Synergy (FICI ≤ 0.5). n’ Number of MRSA strains which showed the interactions. The total
number is n = 10, e.g. n = n’(s) + n’(a) = 8 + 2 for ML + AMK combination in the first line in the table. *No statistically significant differences among
the combinations of ML + AMK, ML + GEN, HL + AMK and HL + GEN (p >0.01)
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Discussion
In the present report, we performed the antibacterial
evaluations of ML and HL against MRSA both used
alone and in combination with clinical conventional
antibacterial agents of broad classes. The synergism of
ML and HL on MRSA is found for the first time so far
to the best of our knowledge [37, 39]. We determined
the antibacterial activity of ML and HL against MRSA
alone with MIC50/MBC50 (n = 10) of 16 ~ 64 mg/L
which are similar to the results of the previous report
which showed MIC/MBC of 12.5/25 mg/L [37]. The
difference is reasonable for the varied MRSA strains
Table 4 Collected time-killing assay results of various combinations
of ML and HL with antibacterial agents at 24 h incubation against a
clinical MRSA144 strain

Combinationa Mascb △LC24(Int)
c

HL + ETM ETM 2.25 ± 0.12(Syn)*

HL + LEV HL 2.09 ± 0.09(Syn)*

ML + ETM ETM 2.08 ± 0.1(Syn)*

HL + AMK AMK(~ML) 2.05 ± 0.07(Syn)*

HL + FOS FOS 2.04 ± 0.03(Syn)

HL + GEN HL 2.02 ± 0.01(Syn)

ML + AMK AMK(~ML) 2.02 ± 0.02(Syn)

ML + FOS FOS(~ML) 2.00 ± 0.01(Add)

ML + LEV LEV(=ML) 1.64 ± 0.04(Add)

ML + CIP CIP 1.24 ± 0.05(Add)

ML + GEN GEN 1.24 ± 0.03(Add)

HL + CIP HL 1.06 ± 0.04(Add)
aSAL Salvianolate, AMP Ampicillin, CAZ Ceftazidime, CFZ Cefazolin, CPS
Cefoperazone-sulbactam, PTZ Piperacillin-tazobactam, AMK Amikacin,
CLI Clindamycin, ERY Erythromycin, FOS Fosfomycin, LEV Levofloxacin
bMasc Most active single drug
c△LC24 △Log10CFU/mL at 24 h, Int Interaction, Syn Synergy (△LC24 ≥ 2),
Add Additivity (1 < △LC24 < 2), Ind Indifference (△LC24 = ±1). Data are
expressed as the mean ± standard error. *p <0.05
used. From the results of combinatory effect on MRSA
and the reported antifungal synergism [39], the two
compounds are demonstrated to possess a wide spectrum
of antimicrobial potentiation of conventional chemo-
therapy. It would be beneficial for the treatment of
mixed infections and even the co-infection of tumor
diseases, considering ML (HL) also potentiating anti-
tumor agents [41–46].
It is important and valuable of ML and HL that po-

tentiate the antimicrobial activity of aminoglycosides
and other antibacterial drugs against MRSA, which
could prevent the drugs from development of MDR to
the troublesome germ. As aminoglycosides are one class
of the important antimicrobials for the treatment of in-
fectious diseases, the MRSA resistance reversal effects of
ML and HL to the aminoglycosides agents (AMK, ETM
and GEN) are especially significant for their application
with largely reducing toxic reactions of the hosts’ liver,
kidney and neural system by a substantially lowered dos-
age. Hence, greater sample scales are needed in order to
draw a more reliable significance of the effectiveness on
MRSA from clinical specimens and antibiotics.
The mechanism of the action of ML and HL against

MRSA together with their synergism with antibacterial
agents is still an unmet question. Two previous reviews
summarized four main resistance mechanisms from bac-
teria: (i) receptor or active site modification, (ii) enzymatic
degradation or modification of antibiotic, (iii) decreased
penetration, or (iv) increased efflux [9, 10]. It was reported
that the antimicrobial mechanisms of Magnolia officinalis
extract resulted mainly in cell membrane and wall dam-
age, causing increased permeability of cell membranes or
lysis of cell walls and loss of cellular constituents, impair-
ment of structural components and changes in bacterial
cell morphology [21], which could ascribed to ML and
HL, the two main constituents of the plant. Some studies
also have demonstrated that increased permeability of



Fig. 2 Time-killing curves of six combinations of ML with AMK (a), GEN (b), ETM (c), CIP (d), LEV (e) and FOS (f) at 1 × MIC and 24 h incubation
against a representative clinical MRSA144 strain. Data are expressed as the mean ± standard error
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the bacterial plasma membrane plays an important
role in modulating resistance to aminoglycoside [57, 58].
Another study showed a phenolic diterpene totarol in-
hibits multidrug efflux pump activity in Staphylococcus
aureus [59]. Therefore, the agents in the present report
which shows the resistance reversal effects on the amino-
glycosides (AMK and GEN) or synergistic potentiation of
other conventional drugs could be through these mech-
anisms to a certain degree, though the real mechanism
is remained to be clarified.
There are additional evidences revealing ML and HL

as the modulators of the microbial membrane perme-
ability. The two compounds showed active to extremely
broad pathogenic microbial species. Apart from MSSA
and MRSA, they showed as well antimicrobial activities
against many other bacteria [19–31] and fungi [32–34]
species and even exhibited antiviral [35] and nemicidal
[36] activities. This antimicrobial mode is suggested like
the antibacterial compounds of surface-active types which
share the characters of usually nonselective to bacteria
and very close MIC/MBC concentrations [30]. Therefore,
ML and HL very likely target the extra cytoplasmic region
as a nonionic surfactant and thus does not need to enter
the cell, thereby avoiding most cellular pump-based
resistance mechanisms as previously proposed [30].
The effects of ML (HL) on MRSA present here will
expand the knowledge of their antimicrobial action
and the future direction of anti-MDR investigations
for drug development.
Conclusions
ML and HL showed a broad spectrum of synergistic
potentiation of conventional antibacterial agents, espe-
cially the resistance reversal of AMK and GEN against
clinical MRSA isolates. These in vitro activities of ML
and HL might partly ascribe to modulate the bacterial
cell membrane penetration and warrant further pharma-
cological investigation.
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