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Antiviral activity and possible mode of action of
ellagic acid identified in Lagerstroemia speciosa
leaves toward human rhinoviruses
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Abstract

Background: Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and
cause billions of USD annually in medical visits and school and work absenteeism. An assessment was made of the
cytotoxic and antiviral activities and possible mode of action of the tannin ellagic acid from the leaves of
Lagerstroemia speciosa toward HeLa cells and three rhinoviruses, HRV-2, -3, and -4.

Methods: The antiviral property and mechanism of action of ellagic acid were evaluated using a sulforhodamine B
assay and real-time reverse transcription-PCR (RT-PCR) with SYBR Green dye. Results were compared with those of
the currently used broad-spectrum antiviral agent, ribavirin.

Results: As judged by 50% inhibitory concentration values, natural ellagic acid was 1.8, 2.3, and 2.2 times more toxic
toward HRV-2 (38 μg/mL), HRV-3 (31 μg/mL), and HRV-4 (29 μg/mL) than ribavirin, respectively. The inhibition rate of
preincubation with 50 μg/mL ellagic acid was 17%, whereas continuous presence of ellagic acid during infection led to a
significant increase in the inhibition (70%). Treatment with 50 μg/mL ellagic acid considerably suppressed HRV-4 infection
only when added just after the virus inoculation (0 h) (87% inhibition), but not before −1 h or after 1 h or later (<20%
inhibition). These findings suggest that ellagic acid does not interact with the HRV-4 particles and may directly interact
with the human cells in the early stage of HRV infections to protect the cells from the virus destruction. Furthermore,
RT-PCR analysis revealed that 50 μg/mL ellagic acid strongly inhibited the RNA replication of HRV-4 in HeLa cells,
suggesting that ellagic acid inhibits virus replication by targeting on cellular molecules, rather than virus molecules.

Conclusions: Global efforts to reduce the level of antibiotics justify further studies on L. speciosa leaf-derived materials
containing ellagic acid as potential anti-HRV products or a lead molecule for the prevention or treatment of HRV infection.

Keywords: Human rhinovirus, Natural antiviral agent, Lagerstroemia speciosa, Ellagic acid, Tannin, Cytotoxicity, Selectivity,
RNA replication
Background
Human rhinoviruses (HRVs) (Picornaviridae) are the
most frequent cause of mild upper respiratory tract in-
fection, or common cold. They are responsible for more
than half of all cases of the common cold [1,2]. HRVs
are also associated with more severe diseases such as
acute otitis media in children [3] and sinusitis in adults
[4]. HRVs can also cause severe lower respiratory tract
infections such as pneumonia [5], wheezing [6],
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bronchiolitis, and exacerbations of asthma and chronic
obstructive pulmonary disease [2] in infants and chil-
dren as well as fatal pneumonia in elderly and immuno-
compromised adults [7]. Although HRV-induced upper
respiratory illness is often mild and self-limiting, the so-
cioeconomic impact caused by medical visits and school
and work absenteeism by HRV infection is considerable
and the degree of inappropriate antibiotic use is signifi-
cant [2,8,9]. More than 100 serotypes of HRV become
an obstacle of development of a unifying vaccine [10].
There is, therefore, a high need for the development of
selective antiviral agents with novel target sites to estab-
lish an effective HRV management strategy and tactics
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because there are currently no approved antiviral therapies
for the prevention or treatment of HRV infection [2].
Plants have been suggested as alternative sources for anti-

viral products largely because they constitute a potential
source of bioactive secondary substances that have been
perceived by the general public as relatively safe, with min-
imal impacts to human health, and often act at multiple
and novel target sites [11-14]. Much effort has been focused
on plants and their constituents as potential sources of
commercial antiviral products for prevention or treatment
of HRV infection. In the screening of plants for anti-HRV
activity, a methanol extract from the leaves of Giant Crape-
myrtle (called banaba in the Phillippines), Lagerstroemia
speciosa (L.) Pers. (Lythraceae), was shown to have good
antiviral activity toward HRV-4. Very little information has
been done to consider potential use of L. speciosa to
manage HRV, although the plant leaves possess antidiabetic
and hypoglycemic [15], antiobesity [16], antioxidant [17],
antigout [18], antiinflammatory [19], and antibacterial acti-
vities [20].
The aim of the study was to assess the cytotoxic and

antiviral effects on HeLa cells and three HRV serotypes
(HRV-2, HRV-3, and HRV-4) of the tannin ellagic acid
from L. speciosa leaves, compared to commercial pure
ellagic acid and ribavirin, a currently used broad-
spectrum antiviral agent [21]. The antiviral property and
mechanisms of action of the constituent were elucidated
using sulforhodamine B (SRB) assay and real-time re-
verse transcription-PCR with SYBR Green dye.

Methods
Instrumental analysis
1H and 13C NMR spectra were recorded in DMSO-d6
on a JNM-ECX 400 spectrometer (Jeol, Tokyo, Japan) at
400 and 100 MHz, respectively, using tetramethylsilane
as an internal standard, and chemical shifts are given in
δ (ppm). UV spectra were obtained in methanol on a
BioMate 5 spectrophotometer (Thermo Spectronic,
Rochester, NY), Fourier transform infrared (FT-IR) spec-
tra on a Nicolet Magna 550 series II spectrometer
(Midac, Atlanta, GA), and mass spectra on a Jeol GSX
400 spectrometer. Silica gel 60 (0.063–0.2 mm) (Merck,
Darmstadt, Germany) was used for column chroma-
tography. Merck precoated silica gel plates (Kieselgel
60 F254, 0.20 mm) were used for analytical thin-layer
chromatography (TLC). A SCL-10 AVP high-performance
liquid chromatograph (Shimadzu, Kyoto, Japan) was
used for isolation of active principles.

Materials
Commercially available pure ellagic acid (≥95% purity) and
SRB were purchased from Sigma-Aldrich (St. Louis, MO).
The antiviral agent ribavirin was supplied by Tokyo
Chemical Industry (Tokyo). Anitbiotic-antimycotic and
minimum essential medium (MEM) were purchased from
Invitrogen (Grand Island, NY). Fetal bovine serum was sup-
plied by PAA Laboratories (Etobicoke, Ontario, Canada).
All of the other chemicals and reagents used in this study
were of analytical grade quality and available commercially.

Human rhinovirus serotypes and cell line
HeLa (ATCC CCL-2), a human epithelial adenocarcin-
oma cervix cell line, was purchased from the American
Type Culture Collection (ATCC) (Manassas, VA). The
cell line was maintained in MEM supplemented with
10% fetal bovine serum and 0.01% antibiotic-antimycotic
in a humidified incubator at 37°C and 5% CO2. HRV-2
(ATCC VR-1112AS/GP), HRV-3 (ATCC VR-1113), and
HRV-4 (ATCC VR-1114AS/GP) were purchased from
ATCC. The three HRVs were propagated in HeLa cells
at 37°C. Virus titers were determined by cytopathic ef-
fects (CPE) in HeLa cells and were expressed as 50% cell
culture infective dose (CCID50) per mL as described pre-
viously [22,23].

Plants
Air-dried leaves of L. speciosa were purchased from a
local Giant Crape-myrtle farm in the Philippines. A cer-
tified botanical taxonomist was used to identify the
plant. A voucher specimen (LS-1 L) was deposited in the
Research Institute of Agriculture and Life Sciences, Col-
lege of Agriculture and Life Sciences, Seoul National
University.

Bioassay-guided fractionation and isolation
Air-dried leaves (2 kg) of L. speciosa were pulverized, ex-
tracted with methanol (2 × 10 L) at room temperature
for 2 days, and filtered. The combined filtrate was con-
centrated to dryness by rotary evaporation at 40°C to
yield 112 g of a dark greenish powder. The extract
(100 g) was sequentially partitioned into hexane-
(9.35 g), ethyl acetate- (14.4 g), butanol- (39.35 g), and
water-soluble (36.9 g) portions for subsequent bioassay.
The organic solvent-soluble portions were concentrated
under vacuum at 40°C and water-soluble portion was
concentrated at 50°C. For isolation of active principles,
viral CPE inhibition assay described previously [22,23]
toward HRV-4 in HeLa cell was used.
The ethyl acetate-soluble fraction (10 g) was most bio-

logically active (Table 1) and was chromatographed on a
70 × 5.5 cm silica gel (600 g) column by elution with a
gradient of chloroform and methanol (100:0 (2 L), 99:1
(1 L), 95:5 (1 L), 90:10 (1 L), 80:20 (1 L), 70:30 (1 L),
60:40 (1 L), 50:50 (1 L), and 0:100 (2 L) by volume) to
provide 19 fractions (each about 500 mL) (Figure 1).
Column fractions were monitored by TLC on silica gel
plates developed with chloroform and methanol (9:1 by
volume) mobile phase. Fractions with similar Rf values



Table 1 Cytotoxicity and antiviral activity of fractions
obtained from the solvent partitionings of the methanol
extract of L. speciosa leaves toward human rhinovirus-4
in HeLa cells using sulforhodamine B bioassay

Test material CC50 (μg/mL) IC50 (μg/mL) (±SD) TIa

Methanol extract 1036 82 ± 1.8d 12.6

Hexane-soluble fraction 1074 777 ± 5.8b 1.4

Ethyl acetate-soluble fraction 1675 71 ± 1.0d 23.5

Butanol-soluble fraction 1260 881 ± 8.7a 1.4

Water-soluble fraction 1409 607 ± 3.5c 2.3

Means within a column followed by the same letter are not significantly
different (P = 0.05, Bonferroni method).
aTherapeutic index = CC50/IC50.
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on the TLC plates were pooled. Spots were detected by
spraying with 10% sulfuric acid and then heating on
a hot plate. Active fractions 13 to 15 (1.23 g) were
pooled and separated into chloroform-soluble (474 mg)
and -nonsoluble (756 mg) fractions. The active nonsolu-
ble fraction was separated into methanol-soluble
(330 mg) and -nonsoluble (426 mg) fractions. The active
methanol-soluble fraction was separated by TLC plate
developed with n-BuOH/HOAc/H2O (4:1:5 by volume)
Figure 1 Isolation procedures of anti-HRV principle. The Lagerstroemia
hexane-, ethyl acetate-, butanol-, and water-soluble portions. For isolation o
cytopathic inhibition assay toward HRV-4 in HeLa cell was used.
to give an active fraction (45 mg, Rf = 0.12). For further
separation of the constituents from the active fraction, a
high-performance liquid chromatography was per-
formed. The column was a 4 mm i.d. × 200 mm EC
200/4 Nucleodex alpha-PM (Macherey-Nagel, Easton,
PA) using a mobile phase of methanol and water (9:1 by
volume) at a flow rate of 1 mL/min. Chromatographic
separations were monitored using a UV detector at
340 nm. Finally, an active principle (35 mg) was isolated
at a retention time of 2.61 min. The isolate was obtained
as green amorphous powder and identified by instru-
mental analyses, including MS and NMR. The mass
spectrum exhibited a molecular ion at m/z 302 [M]+ and IR
absorption at 3380, 1720, and 1690–1610 cm−1 indicates
the presence of phenolic hydroxyl, α-pyrone C =O, and
benzonoid C =C groups, respectively. This compound (1)
was thus identified as ellagic acid (2,3,7,8-tetrahydroxy-
chromeno[5,4,3-cde] chromene-5,10-dione) (Figure 2). The
interpretations of proton and carbon signals were largely
consistent with those of Nawwar and Souleman [24]. Ellagic
acid was identified on the basis of the following evidence:
green amorphous power. UV (MeOH) λmax nm: 255, 360.
FT-IR: νmax cm−1: 3380, 1720, 1690, 1610. EI-MS (70 eV)
speciosa leaf methanol extract was sequentially partitioned into
f active principles from the ethyl acetate-soluble fraction, viral



Figure 2 Structure of ellagic acid. The chemical formula is
C14H6O8; the molecular weight is 302.197 g/mol.
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m/z (% relative intensity): 302 [M]+ (12), 278 (37), 256 (41),
105 (64), 57 (100). 1H NMR (DMSO-d6, 400 MHz): δ 7.47
(2H, s, ArH). 13C NMR (DMSO-d6, 100 MHz): δ 107.7,
110.2, 112.2, 136.2, 139.5, 147.9, 159.0.

Antiviral assay
The antiviral activity of L. speciosa leaf-derived materials
toward three HRVs tested was evaluated by the SRB
method using CPE reduction [22,23]. In brief, HeLa cells
were seeded onto a 96-well microtiter plate at a concen-
tration of 3 × 104 cells per well for 1 day. The culture
medium was then removed, and the plates were washed
with 1 × phosphate-buffered saline (PBS) (pH 7.3). Sub-
sequently, 90 μL of diluted virus suspension containing
CCID50 of the virus stock was added to produce an ap-
propriate CPE within 2 days after infection, followed by
the addition of 10 μL of MEM supplemented with
30 mM MgCl2 containing four to five concentrations of
each test material in 0.1% dimethylsulfoxide (DMSO),
based on the preliminary test results. The culture plates
were incubated at 37°C and 5% CO2 for 2 days. After
washing with 1 × PBS, 100 μL of 70% cold acetone were
added to each well and left for 30 min at −20°C. After
acetone solution was removed, the plates were left in a
dry oven. A volume of 100 μL of 0.057% (w/v) SRB in
1% acetic acid solution was added to each well and left
at room temperature for 30 min. Unbound SRB was re-
moved and the plates were washed five times with 1%
acetic acid before drying and were then left in a dry oven
for 1 day. Bound SRB was solubilized with 100 μL of
10 mM unbuffered Tris-base solution and plates were
left on a table for 30 min. Absorbance was read at
562 nm by using a VersaMax microplate reader (Mo-
lecular Devices, Sunnyvale, CA) with a reference
absorbance at 620 nm. Ribavirin served as a positive
control and was similarly prepared. Negative controls
consisted of the DMSO solution. Viral inhibition rate
(%) was calculated using the following formula [25]:
(ODtV – ODcV)/(ODcd – ODcV) × 100, where ODtV is the
optical density measured with a given concentration of
the test material in HRV infected cells; ODcV is the op-
tical density measured for the control untreated HRV in-
fected cells; ODcd is the optical density measured for the
control untreated HRV uninfected cells.

Cytotoxicity assay
HeLa cells were seeded onto a 96-well microtiter plate
as stated previously. The culture medium was removed
and the plates were replaced with media containing dif-
ferent concentrations of the test materials in DMSO,
based on the preliminary test results. After incubation at
37°C with 5% CO2 for 2 days, the cytotoxicity of the test
materials to HeLa cells was evaluated using a SRB assay
[22,23] as stated previously.

Infectivity of HRV particles
The effects of ellagic acid and ribavirin on the infectivity
of HRV-4 particles were evaluated as described previ-
ously by Choi et al. [23]. Approximately twofold quan-
tities of the IC50 values of each test compound were
applied. HRV-4 was preincubated with 50 μg/mL ellagic
acid or 100 μg/mL ribavirin for 1 h at 4°C. Monolayers
of HeLa cells were infected with the pretreated or un-
treated HRV-4 for 1 h at 37°C. Unbound virus was re-
moved by washing the wells with 2 × PBS, and then
cells were incubated in fresh medium supplemented
with or without test compound at 37°C. After 2 days,
SRB test and antiviral activity were carried out as
stated previously.

Time course
The time-of-addition effects of ellagic acid were tested
according to the method of Choi et al. [23]. In brief,
monolayers of HeLa cells were seeded onto a 96-well
microtiter plate as stated previously. After washing with
1 × PBS, 50 μg/mL ellagic acid were added onto the cul-
ture cells at before (−1 h), during (0 h), or after (1, 2, 4,
and 6 h) HRV-4 infection at 37°C. Ribavirin served as a
positive control and was similarly prepared. After 2 days,
SRB test and antiviral activity were carried out as stated
previously.

Reverse transcription-PCR analysis
To evaluate the level of gene expression, quantitative
real-time reverse transcription-PCR (RT-PCR) with
SYBR Green dye was performed. HRV-4 infected and
noninfected cultures of HeLa cells grown in Corning
25 cm2 cell culture flasks (Corning, NY) were treated
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with 50 μg/mL ellagic acid or 100 μg/mL ribavirin. After
incubation at 37°C and 5% CO2 for 2 days, total RNA
was extracted from the culture cells using the RNeasy
Plus Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. Contaminated genomic
DNA was removed using RQ1 RNase-free DNase (Pro-
mega, Madison, WI). Complementary DNA was synthe-
sized using 1 μg total RNA through a reverse
transcription reaction using the SuperScript First-Strand
Synthesis Kit (Invitrogen, Carlsbad, CA). Quantitative
RT-PCR was performed in 96-well plates using the Ste-
pOnePlus Real-Time PCR System (Applied Biosystems,
Foster, CA). Each reaction mixture consisted of 10 μL of
Maxima SYBR Green/ROX qPCR Master Mix (2×)
(Thermo Scientific, Foster, CA), 2 μL of forward and re-
verse primers (5 pmol each), 1 μL of complementary
DNA (8 ng), and 7 μL of double-distilled water in a final
volume of 20 μL. Oligonucleotide PCR primers for β2-
microglobulin (assay ID AF072097) and HRV-4 (assay
ID DQ473490.1) were purchased from Applied Biosys-
tems. The PCR conditions were as follows: 50°C for
2 min, 95°C for 10 min, and then 50 cycles of 95°C for
15 s and 60°C for 30 s. mRNA expression level of target
gene was normalized to mRNA expression level for the
housekeeping gene β2-microglobulin and analyzed by
the 2–ΔΔCT method using StepOne Software v2.1 and
DataAssist Software (Applied Biosystems).

Data analysis
Cytotoxicity was expressed as 50% cytotoxic concentra-
tion (CC50) of the compound that reduced the viability
of cells to 50% of the control. Fifty percent inhibitory
concentration (IC50) was defined as the compound con-
centration required to reducing the viral CPE to 50% of
the control. The CC50 and IC50 values were calculated
using GraphPad Prism 5 software (GraphPad Software,
La Jolla, CA). Therapeutic index was determined as the
ratio of CC50 to IC50. Results were expressed as mean ±
SD of triplicate samples of three independent experi-
ments. Statistical analyses were carried out using SAS
9.13 program (SAS Institute, Cary, NC). Data from two
groups were analyzed by a Student’s t-test, and multiple
groups were analyzed by a one-way analysis of variance
and Bonferroni multiple comparison test.

Results
Anti-HRV activity of test compounds
The antiviral activities of natural ellagic acid, commercial
pure ellagic acid, and ribavirin were significantly different
from each other toward HRV-2 (F = 72.17; df = 2, 6;
P < 0.0001), HRV-3 (F = 134.26; df = 2, 6; P < 0.0001), and
HRV-4 (F = 81.32; df = 2, 6; P < 0.0001) (Table 2). Based on
IC50 values, the natural ellagic acid and pure ellagic acid
did not differ significantly in the antiviral activity toward
three HRVs, indicating that the activity of the methanol-
extracted ellagic acid is purely due to ellagic acid. Natural
ellagic acid was 1.8, 2.3, and 2.2 times more toxic toward
HRV-2 (IC50, 38 μg/mL), HRV-3 (31 μg/mL), and HRV-4
(29 μg/mL) than ribavirin, respectively. CC50 of ellagic acid
and ribavirin was >100 μg/mL toward HeLa cells in a SRB
assay.

Effect on the infectivity of HRV particles
The effects of ellagic acid and ribavirin on the infectivity
of HRV-4 particles were likewise examined (Figure 3).
The inhibition rates of preincubation with 50 μg/mL
ellagic acid and 100 μg/mL ribavirin were 17 and 5.7%,
respectively. Continuous presence of ellagic acid and
ribavirin during infection led to a significant increase
in the inhibition rate (70 and 65.7%).

Time course of compound addition
To investigate the mode of action of ellagic acid and ri-
bavirin, time course of the inhibition of these com-
pounds at different periods (before, during, and after) of
HRV-4 infection was likewise investigated (Figure 4).
Treatment with 50 μg/mL ellagic acid considerably sup-
pressed HRV infection only when added just after the
virus inoculation (0 h) (87% inhibition). The inhibition
rate of ellagic acid declined to 20% or less when added
at either prior (−1 h) or post (1, 2, 4, and 6 h) infection.
However, the inhibitory effect of 100 μg/mL ribavirin on
HRV-4 infection occurred between 0 and 6 h.

Effect on the level of HRV replication
The RNA replication level of HRV-4 in HeLa cells was
remarkably inhibited in the cell cultures treated with
50 μg/mL ellagic acid (Figure 5). The RNA replication
level of HRV-4 was reduced by 5 fold, compared to the
level in the cell cultures without ellagic acid.

Discussion
The current in vitro study indicates that materials de-
rived from L. speciosa leaves exhibited antiviral activity
and selectivity toward three rhinoviruses HRV-2, HRV-3,
and HRV-4. The plant grows widely in tropical
countries, including the Philippines, India, Malaysia,
China, and Australia and is a popular folk medicine in
Southeast Asia. L. speciosa leaves contain acetal, alka-
loids, sterols, tannins, and triterpenoids [26,27]. Excel-
lent antidiabetic properties of a standardized extract
from L. speciosa leaves have been well noted [28,29].
Various compounds, including phenolics, terpenoids,

and alkaloids, exist in plants, and jointly or independ-
ently they contribute to antiviral efficacy [14]. Many
plants and their constituents manifest antiviral activity
toward different viruses [14,30] and have been proposed
as alternatives to conventional antiviral drugs. Anti-HRV



Table 2 Cytotoxicity and antiviral activity of ellagic acid and antiviral agent ribavirin toward human rhinovirus-4 in
HeLa cells using sulforhodamine B bioassay

Compound HRV-2 HRV-3 HRV-4

CC50 (μg/mL) IC50 (μg/mL) (±SD) TIa IC50 (μg/mL) (±SD) TIa IC50 (μg/mL) (±SD) TIa

Natural EAb >100 38 ± 3.2b >2.6 31 ± 5.2b >3.2 29 ± 2.5b >3.4

Pure EA >100 41 ± 1.1b >2.4 30 ± 2.4b >3.3 29 ± 1.7b >3.4

Ribavirin >100 70 ± 4.9a >1.4 71 ± 0.5a >1.4 63 ± 5.6a >1.6

Means within a column followed by the same letter are not significantly different (P = 0.05, Bonferroni method).
aTherapeutic index = CC50/IC50.
bEllagic acid.
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constituents derived from plants include alkaloids (e.g.,
arborinine and (S)-ribalinine, IC50 3.19 and 82.95 μM
[31]; glaucine, IC50 22 μM [32]), coumarins (e.g., 6,7,8-
trimethoxycoumarin and daphnoretin methyl ether, IC50

11.98 and 97.08 μM [31]; farnesiferol B and C, IC50 ≈
2.61 μM [33]), flavonoids (e.g., 4′,5-dihydroxy-3′,3,7-tri-
methoxyflavone, IC50 0.29 μM [34]; 3-methylquercetin
and three related compounds, effective concentration
15.8 μM [35]; chrysosplenol D and others, minimum ef-
fective dose 0.22–33.3 μM) [36]; chrysosplenol C, IC50

0.75 μM [37]), terpenoids (e.g., 3-O-trans-caffeoyltor-
mentic acid, IC50 30.72 μM [38]; orobol 7-O-D-gluco-
side, IC50 1.29–19.62 μM [39]), organic acid (e.g., raoulic
acid, IC50 0.51 μM [40]; gallic acid, IC50 ≈ 294.55 μM
[41]), and thiosulfinates (allicin and allyl methylthiosulfi-
nate [42]). It has been reported that HRV capsid-binding
compounds toward all HRV serotypes showed the
Figure 3 Effect on the infectivity of HRV-4 particles.
Approximately twofold quantities of the IC50 values of ellagic acid
(EA) and ribavirin (RN) were applied. Human rhinovirus-4 (HRV-4)
particles were incubated with 50 μg/mL EA and 100 μg/mL RN for
1 h at 4°C. Afterwards, HeLa cells were incubated with treated or
untreated virus for 1 h at 37°C. Unbound virus was removed by
washing the wells, and infection was continued by cultivating cells
in fresh medium with or without test compound at 37°C. After
2 days, inhibition was evaluated by SRB method and expressed as
the inhibition rate. Each bar represents the mean ± SD of triplicate
samples of three independent experiments. ***Significant at
P < 0.001, according to a Student’s t-test.
existence of group A and B, based on a wide range of
susceptibilities to antiviral compounds [43]. In the
current study, the antiviral principle was determined to
be the tannin ellagic acid. The constituent exhibited
antiviral activity toward both group A (HRV-2) and
group B (HRV-3 and HRV-4). IC50 of ellagic acid was
between 95.9 and 125.8 μM toward three HRVs, al-
though IC50 of the natural compounds stated previously
is between 0.22 and 294.55 μM. Ellagic acid exhibited
greater antiviral activity than ribavirin toward three
HRVs and high selectivity. This original finding indicates
that materials derived from L. speciosa leaves can hold
promise for the development of novel and effective nat-
urally occurring antiviral agents for two different HRV
groups (A and B). In addition, ellagic acid was reported
to possess anti-HIV activity, through inhibition of HIV
protease [44]. Orobol 7-O-D-glucoside from L. speciosa
leaves is also known to have broad-spectrum antiviral
Figure 4 Time-of-addition effect on HRV-4 replication in HeLa
cells. Approximately twofold quantities of the IC50 values of ellagic
acid (EA) and ribavirin (RN) were applied. The 50 μg/mL EA and
100 μg/mL RN were added at various times preinfection (−1 h),
coinfection (0 h), or postinfection (1, 2, 4, and 6 h) of human
rhinovirus-4 (HRV-4) to HeLa cells at 37°C. After 2 days, inhibition
was evaluated by SRB method and expressed as the inhibition rate.
Each bar represents the mean ± SD of triplicate samples of three
independent experiments.



Figure 5 Effect on replication level of HRV-4. The RNA replication
level of human rhinovirus (HRV-4) was detected by real-time reverse
transcription-PCR with SYBR Green dye in HeLa cells 2 days after
infection in the presence of 50 μg/mL ellagic acid (EA). HRV RNA
expressions were normalized to the constitutive expression of mRNA
of the housekeeping gene β2-microglobulin (B2M) and analyzed by
the 2–ΔΔCT method using StepOne Software v2.1 and DataAssist
Software. Each bar represents the mean ± SD of duplicate samples of
three independent experiments. ***Significant at P < 0.001, according
to a Student’s t-test.
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activity toward various HRVs including group A and B,
as well as pleconaril-resistant HRV-5 [39].
Investigations on the modes of antiviral action of nat-

urally occurring compounds may contribute to the de-
velopment of selective HRV therapeutic alternatives with
novel target sites. The modes of anti-HRV action of
plant secondary substances have been well reviewed by
Rollinger and Schmidtke [45]. Targeting virus molecules
is likely more specific and less toxic, but there is a nar-
row spectrum of viruses and a higher risk of creating re-
sistant viruses [46]. On the contrary, chemicals which
target cellular molecules may possess a broader antiviral
activity spectrum and less risk of developing virus resist-
ance, but may be more toxic to the host cell [46]. In the
current study, ellagic acid does not interact with the
HRV-4 particles, as preexposure of the virus to the con-
stituent did not alter the infectivity of HRV-4 particles.
Based on time-of-addition experiments, ellagic acid sig-
nificantly suppressed HRV-4 infection only when added
just after the virus inoculation (0 h), but not before −1 h
or after 1 h or later. This finding suggests that ellagic
acid may directly interact with the human cells in the
early stage of HRV infections to protect the cells from
the virus destruction. In addition, RT-PCR analysis re-
vealed that ellagic acid strongly inhibited the RNA
replication of HRV-4 in HeLa system, suggesting that
ellagic acid inhibit virus replication by targeting on cellu-
lar molecules, rather than virus molecules. Detailed tests
are needed to fully understand the anti-HRV mode of
action of ellagic acid.

Conclusions
L. speciosa leaf-derived preparations containing ellagic acid
could be useful as an antiviral agent in the prevention or
treatment of HRV infection. The antiviral action of ellagic
acid may be an indication of at least one of the pharmaco-
logical actions of L. speciosa. For the practical use of L. spe-
ciosa leaf-derived preparations as novel anti-HRV products
to proceed, further research is needed to establish their
human safety and whether this activity is exerted in vivo
after consumption of L. speciosa leaf-derived products by
humans. Historically, a tea from the plant leaves has been
used for the treatment of diabetes mellitus in the
Philippines [28]. Rats fed ellagic acid at doses as high as
50 mg/day up to 45 days did not cause any signs of sys-
temic toxicity [47]. Lastly, detailed tests are needed to
understand how to improve anti-HRV potency and stability
for eventual commercial development.
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