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Abstract

may be attributed to oxidative stress.

not cause hematotoxicity nor renal or hepatotoxicity.

Background: Marine environment is inestimable for their chemical and biological diversity and therefore is an
extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the
mechanism and therapeutic action of natural products helped to evaluate for their potential activity.

Methods: We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites
tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells
showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its
ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels

Results: Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and
increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis.
Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly
inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological
analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did

Conclusion: Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including
biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident
that the mechanism explains the apoptotic activity of the algae extract.
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Background

All through the medical history, nature is the excellent
and reliable source of new drugs, including anticancer
agents. Natural sources like plants and marine products
have always been useful sources of antitumor or cancer
prevention compounds [1,2]. From the currently used an-
ticancer chemotherapeutic drugs, approximately 70% are
derived in from natural sources [3] including some drugs
under clinical trials obtained from marine source [4,5].
Evidence from recent publication indicates that marine
natural products, especially the secondary metabolites
from marine organisms, are potential source and give high
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yield anticancer drugs than terrestrial sources [6,7]. In re-
cent years compounds like Arc-C (Cytarabine, an anti-
leukemic drug) and trabectedin (Yondelis, ET-743, an
agent for treating soft tissue sarcoma) were developed
from marine sources [8,9]. Fungi obtained from marine
source are source of structurally unique and biologically
active secondary metabolites [10]. Number of preclinical
anticancer lead compounds obtained from marine-derived
organism has been increasing rapidly in last few years
[11-13]. In many cases the natural occurring compounds
are more effective and do not have considerable undesired
consequences compared with synthetic drugs [14]. Com-
pounds from natural source are studied extensively with
respect to structural modification in order to explore their
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further use in pharmacy and medicine in the prevention
and treatment of cancer [15].

Gracilaria edulis (S.G. Gmelin) P.C. Silva, a major
Indian agarophyte and an edible marine alga is com-
monly found in Indian coast [16]. In a previous study,
we reported the role of G. edulis in improvement in sur-
vival and cancer treatment [17]. We continued further
to establish the role of G. edulis as anticancer drug and
in this study we did an extensive evaluation of the acti-
vity to understand the mechanism. Increase in life span
in the Ehrlich ascites tumour (EAT) cells bearing mice
after treatment with ethanolic extract of Gracilaria edulis
(EEGE) and results from the biochemical parameters
encouraged us to perform the detailed study for this
novel anticancer drug.

Methods

Reagents

Culture medium RPMI 1640, fetal bovine serum (FBS),
HEPES and L-glutamine were purchased from Life
Technologies (Grand Island, NY, USA). Trypan blue,
MTT were obtained from Sigma Aldrich (St. Louis, MO,
USA). Annexin-V-fluorescein isothiocyanate (FITC) and
propidium iodide (PI) were from BD Biosciences (San
Jose, CA, USA), and 2,7-dichlorodihydrofluorescein diace-
tate (H2-DCFDA) was from Molecular Probes/Invitrogen
(Eugene, OR, USA). Caspase-2, caspase-3 and caspase-9
activities were evaluated by using commercial available
kits from R&D Systems (Minneapolis, MN, USA). For
evaluation of hepatic enzymes such as aspartate amino
transferase (AST), alanine amino transferase (ALT), alka-
line phosphatase (ALP), and lactate dehydrogenase (LDH)
commercial kits were used (Span Diagnostics Ltd., Vadodara,
Guyjarat, India).

Collection and extraction of EEGE

Fresh algae of G. edulis were collected from the regional
sea shore during the month of December in the Mandapam
region, Tamil Nadu. Alcoholic extract of the algae was
prepared as described earlier and the presence of bio-
logically active components including alkaloids, flavo-
noids, sterols, terpenoids, proteins, saponins, phenols,
coumarins, tannins and glycosides was documented
using spectrophotometric analysis [17]. No specific per-
mission was required for the collection of these algae as
these were collected from regional sea shore, not cov-
ered by any regulatory body and private land. This study
does not involve any endangered or protected species. A
voucher specimen of this algae was matched with the
local herbarium authentic specimen (Herbarium no.
AC.3.1.1.5) housed at Central Marine Fischeries Research
Institute, Cochin, Kerala, India and was deposited in
the herbarium.
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Animals and mouse tumor model

Adult swiss albino mice weighing between 25-30 g were
procured from Tamilnadu Veterinary and animal Science
University, Chennai. The animals were kept in well-
ventilated cages and fed with commercial food and water
ad libitum and raised under specific pathogen-free con-
ditions. The study was conducted with necessary ethical
clearance from Institutional Animal Ethics Committee
(IAEC) of Srimad Andavan Arts & Science College. EAT
cells were provided as courtesy sample by Amala Cancer
Research Center, Thrissur, India. Ascitic tumor cells
were counted by trypan blue dye exclusion method and
always found to be 95% or more viable. Cells were
maintained in mice in ascites form by successive trans-
plantation of 6x10° cells/mouse in a volume of 0.2 ml
in PBS [18].

In vitro EAT cell culture
Following inoculation of EAT cells in mice abdominal
cavity, after ten days the cells were collected by needle
aspiration, washed in saline and erythrocytes were re-
moved by washing in

35 mM NaCl. Cells were cultured in RPMI 1640 supple-
mented with HEPES (25 mM), L-glutamine (2 mM), so-
dium bicarbonate (25 mM), 10% FBS, 2-mercaptoethanol
(50 uM) and antibiotics (100 U/ml penicillin and 100 pg/ml
streptomycin) at 37°C in 5% of CO, incubator. Viability
and cell density were determined by the trypan blue dye
exclusion test.

Evaluation of EEGE cytotoxicity in EAT cells

In a 96 well plate, EAT cells (3x10°/ml) in RPMI 1640
with 10% FBS were seeded in quadruplicate. EEGE was
dissolved in PBS which final concentration was adjusted
to less than 0.1% (v/v) of the solvent in culture medium.
The cells were treated with EEGE while control samples
were treated with the corresponding volume of culture
medium containing PBS. All samples were incubated in
5% CO, incubator for 72 hours at 37°C in a 100% hu-
midity atmosphere. Cell proliferation was determined
using the standard MTT assay [19] and the phosphatase
activity assay [20].

Leukocyte culture and evaluation of EEGE cytotoxicity

Peripheral human blood was obtained from healthy
adult volunteer with prior ethical approval and diluted
with an equal volume of RPMI 1640 medium. Mono-
nuclear cell was isolated using Ficoll-Hypaque density
gradient separation solution, washed twice in RPMI1640
medium. Cells were suspended in RPMI1640 medium
supplemented with 2 mM glutamine, antibiotics and
10% FBS. Leukocytes at a density of 1 x 10° plating cells/
ml were cultured with 5 pug/ml of phytohemagglutinin in
96-well microtiter plates. Cells were incubated with
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EEGE in a 5% CO, incubator for 72 h at 37°C. Control
samples were treated with the corresponding volume of
culture medium containing less than 0.1% PBS. After
treatment, cell proliferation was determined using the
MTT reduction assay [19].

Glutathione assay

EAT cells (5 x 10°) were treated with various concentra-
tions of EEGE including 0, 25, 50 and 100 pg/ml for
72 hours were washed with PBS. Total and reduced
glutathione concentration in the cells was estimated by
Glutathione Assay Kit from Sigma. The cells were pro-
cessed as per kit protocol. The sample is first depro-
teinized with the 5% 5-sulfosalicylic acid solution.
Glutathione content of the sample is then assayed using
a kinetic assay in which catalytic amounts of glutathione
cause a continuous reduction of 5,5'-dithiobis-(2-nitro-
benzoic) acid (DTNB) to TNB. The oxidized glutathione
formed is recycled by glutathione reductase and
NADPH. The product, TNB, is assayed colorimetrically
at 412 nm.

Reactive oxygen species (ROS) measurement

EAT cells (5 x 10°) were treated with EEGE (50 pg/ml)
for 8, 12 and 24 hours in a 96-well plate followed by ana-
lysis of intracellular ROS using the oxidation-sensitive
fluorescent probe 2,7-dichlorofluorescein diacetate (DCFH-
DA). DCFH-DA enters cells and is hydrolyzed to membrane-
impermeant dichlorofluorescein, which reacts with ROS
to form the highly fluorescent dichlorofluorescein. Briefly,
EAT cells were loaded with 5 uM DCFH-DA for the last
30 min of EEGE and the fluorescence of the generated
DCF was measured in a fluorimeter plate reader at
490 nm excitation and 538 nm emission. Corrected values
according to the cell number estimated by the trypan blue
assay and the amount of ROS formed was expressed
relative to the control [21,22].

DNA fragmentation

DNA fragmentation was evaluated by using protocol de-
scribed by McGahon et al. (1995) with modification.
EAT cells (5 x 10°) were incubated with the EEGE at dif-
ferent concentrions (0, 25, 50, 100 pg/ml) for 48 hours
to estimate the DNA fragmentation at 37°C. After
48 hours, cell suspension containing 4-6x10° cells in a
microcentrifuge tube was centrifuged for 5 min at
2000 x g, 4°C. The cell pellet was processed to isolate
the DNA as per the protocol followed by addition of
10 pg/ml RNase (Boehringer Mannheim, Indianapolis,
IN) and were incubated at 50°C for 1 hour. DNA was
purified using DNA purification kit from Qiagen as per
manufactures protocol. Extracted DNA was dissolved in
50 pL TE buffer, and electrophoresis was performed on a
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1.8% agarose gel containing ethidium bromide [23] and
densitometric analysis of bands was done by Image]
Software (NIH, USA).

Determination of caspases activities

EAT cells (5 x 10°) were incubated with EEGE (0, 25, 50,
100 pg/ml) for 72 hours and followed by measurement
of caspase-2, caspase-3 and caspase-9 activities using
colorimetric protease kits as per the manufacturer’s
protocol. To prepare total cellular protein, cells were
pelleted by centrifugation and lysed on ice and total pro-
tein concentration in the lysate was measured. With
each X-pNA substrate (200 pM final concentration) 200 pg
of proteins were incubated at 37°C for 4 hours in a 96
well plate. The absorbance of the samples was measured
at 405 nm and the increase in the caspase activity of
treated cells was determined by comparing the results
with the untreated cells and standard drug after back-
ground correction.

Annexin V-FITC/PI analysis

Detection of apoptosis was performed using the Annexin
V-FITC/PI apoptosis detection kit according to manu-
facturer’s protocol. Briefly, both EEGE treated and un-
treated EAT cells were washed in 1x PBS and stained
with annexin V-FITC conjugate and PIL. Cells were then
analyzed by flow cytometry (BD FACSCalibur, USA)
using BD CellQuest acquisition and analysis software.

Antitumor evaluation

The antitumor activity of EEGE was evaluated by mea-
suring survival time and tumor growth inhibition. Mice
were inoculated with 6x10° EAT cells by i.p. route. After
24 h, EEGE was administered by i.p. injections of 0.2 ml
per mouse. Endpoint of experiments was determined by
spontaneous death of animals. The ascitic fluid from the
peritoneal cavity of tumor bearing mice was quantita-
tively isolated by peritoneal lavage after death. The total
number of tumor cells was counted by the trypan blue
exclusion method. EEGE solutions were prepared in PBS
containing 10% Tween 80. Control mice received the
vehicle control as i.p. injection of 10% Tween 80 in
PBS for the same time period.

In vivo toxicological studies

An extended 35-day toxicity study of EEGE was con-
ducted in adult swiss albino mice with daily doses of
300 mg/kg. Two groups of six animals each were used
for toxicity study where animals had free access to water
and food. The first group was served as vehicle control
and second group was given 300 mg/kg of EEGE in PBS,
containing 10% Tween 80, by i.p. injections of 0.2 ml per
mouse, once daily. Every day morning clinical signs of
gross toxicity, behavioral changes and mortality were
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observed. Body weight of individual animal was recorded
before and at the end of experiment. After 24 hours of
the administration of the last dose, the animals were eu-
thanized by anesthetizing with ketamine hydrochloride
and xylazine hydrochloride administered [24]. Whole
blood was then sampled from the retro-orbital sinus
with suitable hematological tube. For hematology assays
150 pl was retained and the remaining volume was used
for serum biochemistry. The blood for serum biochemis-
try was allowed to clot at room temperature and was
centrifuged at 3000 rpm for 10 min for serum sepa-
ration. After blood collection, all mice were killed by
cervical dislocation and liver and kidneys were collected,
washed in PBS, fixed with 10% formalin and stored for
histopathological examination.

Hematological and biochemical analyses

Whole blood was immediately analyzed for complete
blood count with differential and platelet count using the
fully automated analyzer (Hitachi, Tokyo, Japan). Serum
samples were analyzed for AST, ALT activities, and also
ALP and LDH levels by commercial kits as per manufac-
turer’s instruction.

Histopathological analysis

Routine histological processes were employed for paraffin
inclusion, sectioning and H/E staining of liver and kidney
from mice treated with EEGE and vehicle control. A
histopathologist performed a complete examination of
the tissues.

Statistical analysis

All in vitro experiments were performed in triplicate and
results are represented as means + SD. Significant differ-
ences among groups was performed by ANOVA followed
by Tukey test. The survival of mice was demonstra-
ted using the Kaplan—Meier method and the logrank
(Cox—Mantel) statistical test was applied to compare the
curves for non-parametric procedures. Values where
p <0.05, differences were considered significant at repre-
senting two-sided test of statistical significance.

Result

Effect of EEGE on proliferation and viability of EAT cells
and lymphocytes in vitro

Cytotoxicity induced by EEGE in EAT cells was evalu-
ated by using MTT reduction and phosphatase activity
with different concentrations of EEGE after 72 hours of
treatment (Figure 1). EAT cells were exposed to various
concentrations of EEGE and it resulted in a significant
negative effect in cell proliferation, with the ICsq of 45
pg/ml observed in MTT reduction and phosphatase
activity assays. At low concentrations of EEGE, a non-
significant acceleration of cell growth was observed
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Figure 1 Cytotoxicity of EEGE in EAT cells (3 x 10° cells/ml;
solid line) and human lymphocytes (1 x 10° cells/ml; dashed
line) after 72 hours of incubation. Effects of EEGE on MTT
reduction (A) and protein phosphatase activity () is expressed
relative to control cell viability (100%) and each point represents
the mean +SD.

(Figure 1). By using trypan blue dye exclusion method,
the effect of EEGE in EAT cells in vitro assay we also
confirmed the above observation. Cells exposed to EEGE
for 72 hours decreased cell viability in a dose-dependent
manner (Figure 2). At 50 pg/ml dose the EAT cells via-
bility was close to 65% and the maximum decrease of
15% was observed at 100 pg/ml. From these results, we
were convinced that the EEGE potently inhibits the pro-
liferation and viability of EAT cells and we continued
with further investigations. EEGE was able to inhibit
proliferation of human lymphocytes also, however the
potency was not comparable to EAT cells, presenting
ICso nearly 1.5 fold higher as 70 pg/ml than for EAT
cells, as observed in the MTT assay after 72 hours of in-
cubation with EEGE in the same range of concentrations
(Figure 1). For further in vitro analysis EEGE was used
at 25, 50 and 100 pg/ml for cellular assays.
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Figure 2 Effect of EEGE on the viability of EAT cells (3 x 10° cells/ml)
determined by trypan blue exclusion test after 72 hours of
incubation. The results present the mean + S.D. of three experiments run
in quadruplicate.
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Cellular glutathione and reactive oxygen species (ROS)
levels altered by EEGE in EAT cells

ROS is known to be a key player in highly organized cel-
lular functions such as pathways of signal transduction
and apoptosis [25] and a role for oxidative signaling in
the cytotoxicity of marine product in cancer cells has
been previously reported [26]. In this context we investi-
gated a potential role of oxidative stress in the alteration
of cellular sensitivity to EEGE. EAT cells treated with
EEGE for 30 min were used for estimation of ROS level
after the addition of DCFH-DA. The time-course effect
of EEGE on the EAT cell intracellular peroxide levels is
presented in Figure 3. Intracellular ROS production was
observed at 8—24 hours after incubation of tumor cells
with 50 pg/ml of EEGE as compared to control cells,
and found to be significantly increased (p<0.01). In-
crease in peroxides amounts generated by EAT cells was
also noted to be time-dependent, with significantly
higher (p <0.01) at the beginning of treatment such as 8
and 12 hours in comparison with the 24 hours time
point and the peroxides levels reached to normal after
24 hours exposure in EAT cells.

With observation of an oxidative cytotoxic mechan-
ism, we further measured the level of glutathione (GSH),
the major non-protein thiol in mammalian cells with
chemoprotective action, particularly associated with
antioxidant defense. EAT cells treated with EEGE were
found reduced the GSH levels to half (Figure 4). And
this pattern of decrease was seen statistically significant
at all concentrations (25, 50, 100 pg/ml, p<0.01) of
EEGE when compared with the control cells.
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Figure 3 Time-course effect of EEGE on ROS generation in EAT
cells. The fluorescence intensity of DCF was monitored at 538 nm,
with excitation wavelength set at 490 nm, and used to indicate

the level of intracellular peroxides formation. Changes in DCF
fluorescence in tumor cells were measured at 8, 12, 16, 20 and

24 hours after treatment with 50 pg/ml of EEGE, *p < 0.01 compared
to control and 24 h-time points (ANOVA, Tukey test). The results
express the mean + S.D. of three independent experiments run

in duplicate.
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Figure 4 Alteration on GSH levels of EAT cells (3 x 10° cells/ml)
treated with EEGE for 72 h, *p < 0.01 compared to control cells
(ANOVA, Tukey test). The results present the mean + S.D. of three

experiments run in duplicate.

Apoptosis induction in EEGE-treated EAT cells

To understand the mechanism of cytotoxicity of EEGE
to EAT cells, we investigated the nuclear DNA fragmen-
tation based apoptosis approach, a characteristic hall-
mark of apoptotic cells. As observed in Figure 5, DNA
fragmentation in EAT cells was dose-dependently in-
creased with EEGE treatment. The control untreated
cells produced 10% of fragmentation, while EAT cells
treated with 25, 50, and 100 pg/ml of EEGE for 72 hours
produced 21, 27, and 43% of DNA fragmentation, re-
spectively (p < 0.05). These DNA fragmentation observa-
tion suggests that EEGE induces EAT cells killing by the
process of apoptosis. For detailed understanding of cell
death and differentiation between cells undergoing ne-
crosis or apoptosis in the EEGE-mediated cell death,
EAT cells were treated with similar concentrations of
EEGE as in DNA fragmentation experiment (25, 50 and
100 pg/ml) for 72 hours and analyzed by flow cytometry
using PI and FITC conjugated Annexin-V labeling.
Changes in membrane phospholipid bilayer, such as
externalization of the phosphatidylserine, which can be
stained with Annexin-V-FITC, are characteristic of cells
undergoing apoptosis. In contrast, loss of membrane in-
tegrity, shown by PI staining, has been associated with
necrosis. Analysis by flow cytometry of EEGE-treated
cells stained with Annexin- V-FITC directed that apop-
tosis is major factor for cell death as there is significant
increases in Annexin-V-FITC positive populations after
72 hours of exposure to 50 pug/ml (p < 0.05) and 100 pg/ml
(p<0.01) EEGE. A considerable increase in Annexin-V-
FITC staining of 100 pg/ml over 50 pug/ml treated samples
was observed (Figure 5). These results supported the higher
DNA fragmentation levels determined in 100 pg/ml EEGE
treated cells (Figure 6). In addition, small, but statistically
significant (p < 0.05), populations of cells were Annexin-
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Figure 5 Effect of EEGE on apoptosis induction. EAT cells were treated for 72 hours with 25, 50 and 100 pg/ml EEGE for 72 hours and
harvested for quantification of Annexin-V-positive, Pl-positive, and Annexin-V/Pl-positive cells by flow cytometry, a) graph indicating increase in
the early apoptotic events in EEGE treated cells, b) representative dot plot from the flow cytometry data.
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V-FITC/PI double stained after treatment with 50 and
100 pg/ml, while only at the highest dose of EEGE a sig-
nificant (p < 0.05) PI-positive population could be deter-
mined (Figure 5), reflecting cell death by necrosis, which
might be related to the longer period of incubation with
the algae extract. Significance of caspases in apoptosis very
well documented and the role of caspase-2, caspase-3 and
caspase-9 in the EEGE induced EAT cell death was exa-
mined. After 72 hours of incubation with EEGE, cells
treated with 25 pg/ml of the algae extract a significant in-
crease (2 fold) for all caspases activities when compared to
the control cells (p<0.01) (Figure 7). Treatment of cells
with 100 pg/ml EEGE resulted in 4.5, 5 and 6-fold in-
creases of caspase-2, caspase-3 and caspase-9 activities,

50 = * %

N W B
o o o

DNA Fragmentation (%)
)

0 25 50 100
EEGE (ug/ml)

Figure 6 Percentage data of DNA fragmentation obtained by
DPA method in EAT cells (3 x 10° cells/ml) treated with
different concentrations of EEGE for 72 hours, *p < 0.01
compared to control cells. **p < 0.01 compared to control cells
and to 25 and 50 pg/ml treatments (ANOVA, Tukey test). The results
express the mean + S.D. of three experiments run in duplicate.

respectively (p < 0.01). These biochemical features, as high
DNA fragmentation, low membrane rupture, high phos-
phatidylserine externalization and activation of effector
caspases are most likely indicative of activation of an
apoptotic death pathway by EEGE in EAT cells.

Antitumor evaluation

With evidence from the in vitro studies for the antitu-
mor potential of this algae extract, we continued to in-
vestigate with in vivo model in this study. The effect of
EEGE on the survival time of EAT cells bearing mice
was evaluated and is presented in Figure 8. EAT cells
were injected intraperitoneally to mice and these cells

* %
7007 o Caspase 2

600 @ Caspase 3

@ Caspase 9

% of Control

Control 25 50 100
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Figure 7 Alterations on caspase-2, caspase-3 and caspase-9
activities after incubation of EAT cells (3 x 10° cells/ml) with
different concentrations of EEGE for 72 hours, *p < 0.05
compared to control cells. **p < 0.01 compared to control cells
and to 25 and 50 pg/ml treatment (ANOVA, Tukey test). The results
express the mean + S.D. of two experiments run in triplicate.
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Figure 8 Survival of EAT cells bearing animals treated with EEGE. Mice were inoculated i.p. with 6 x 10° cells and after 24 h, they were
treated i.p. with daily 0.2 ml injections of 25 ug/ml (#), 50 ug/ml (A) and 100 ug/ml EEGE (e) throughout their lifespan. Mice from the control
group were treated with 0.2 ml of vehicle, PBS containing 10% Tween 80 (x). Curves were represented by the method described by Kaplan-Meier
and differences among groups were analyzed by Log-rank (Cox-Mantel) test for non-parametric procedures (*p < 0.05 compared with vehicle-treated
tumor group and n = 6/group).

grew as ascites tumor with accumulation of large volume
of ascitic fluid in the peritoneal cavity. Survival of the
control group was found to be at 50% on the 32" day
after tumor inoculation and no animal survived beyond
the 34™ day. Whereas survival of EEGE (300 mg/kg)
treated EAT cells bearing animals was 100% on the 38"
day and 15% in the 45™ day, with no animal alive be-
yond day 48. All the doses of the algae extract tested in
this experiment (100, 200 and 300 mg/kg) significantly
altered the rate of mice survival (p < 0.05). No significant
statistical difference was observed between mice treated
with 100 and 200 mg/kg of EEGE. The administration of
100, 200 and 300 mg/kg of EEGE after tumor inocula-
tion resulted in a significant inhibition of tumor growth
(p <0.05), as evident from a 75% reduction in intraperi-
toneal tumor cell burden on the day of death. Mice
treated with 100, 200 and 300 mg/kg EEGE presented
36+23x10", 38+2.1x10" and 3.9+2.8x 10" viable
ascites cells, respectively, while the control group
presented 12.1 + 3.4 x 10”.

In vivo toxicity studies

After encouraging effect of EEGE in inhibiting cancer
progression in vivo, we evaluated the undesired side ef-
fects of the i.p. administration of daily doses of 100, 200

and 300 mg/kg of EEGE for 35 days in healthy adult
swiss albino mice. Drug toxicity was assessed by clinical
signs of gross toxicity, behavioral changes and mortality,
including hematological, biochemical and histopatho-
logical parameters. No animal death was observed in any
of the groups during the experimental period of 35 days.
No abnormal clinical signs or behavioral changes were
observed in any of the groups, and changes in body
weights of the EEGE-treated groups were not signifi-
cantly different between any groups including the con-
trol group after 35-days of treatment period (Table 1).
There were no significant changes in hematological pa-
rameters in the EEGE-treated groups (Table 2). Similarly,
no significant differences were found between the EEGE-
treated groups and the controls for the three blood chem-
ical parameters evaluated (Figure 9), AST, ALT, ALP and
LDH, which were within the physiological range of values
expected for the method of blood collection [27]. These
data indicate that daily intraperitoneal injections of EEGE
at doses up to 300 mg/kg for 35 days did not cause hema-
totoxicity nor poses risks of renal or hepatotoxicity. At
necropsy, no visible pathological changes were noted in
the livers and kidneys of mice administered EEGE at
100, 200 and 300 mg/kg doses. Histological analysis of
formaldehyde-fixed, paraffin embedded liver and kidney

Table 1 Body weights (g) of control and EEGE treated mice during the period of the study

Day(s) Control EEGE 100 mg/kg EEGE 200 mg/kg EEGE 300 mg/kg
Mean +S.D. Mean +S.D. Mean +S.D. Mean +S.D.

0 23.6+1.18 22.8+0.954 234+1.26 228 +0.954

35 27.1+£1.98 278+133 29.6 £2.06 283£2.25
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Table 2 Hematological parameters measured in BALB/c mice treated with different doses of EEGE for 35 days

Parameter (unit) Control EEGE 100 mg/kg EEGE 200 mg/kg EEGE 300 mg/kg
Mean+S.D. Min Max Mean=S.D. Min Max MeanxS.D. Min Max Mean*=S.D. Min Max
RBC (10%/ul) 944+0987 865 1183  936+158 768 120 876+ 1.12 728 105 890+ 1.05 8.12 108
WBC (103/u\) 512+1.56 4.1 6.3 6.21+148 4.87 7.23 518+1.18 478 6.68 498+ 147 4.2 6.85
Lymphocytes (%) 79.1+634 743 884 83.2+6.68 778 905 834+112 749 853 799+6.37 713 83.8
Monocytes (%) 64+13 52 7.8 5318 352 681 580+ 167 4.0 82 53£18 4.2 7.5
Eosinophils (%) 12£1.1 0 3.2 06£03 0 1.1 14£0.7 0 24 15070 0.1 22
Basophils (%) 08+0.2 0 14 04+03 0 12 00905 0 13 03£0.15 0 1.1
Platelet (10°/ul) 564+178 325 8.21 7124245 413 109 6.12+1.98 348 925 645+278 3.75 102
HGB (g/dl) 13.9+£1.58 124 17.1 134131 11.9 14.9 13.8+1.48 12.1 14.8 132£145 122 14.5
HCT (%) 40.8+3.56 348 461 39.1£5.11 341 472 42.1+3.78 356 458 409+£432 362 432
MCV (fl) 5244232 46.21 54.2 485+236 445 51.2 513+1.56 46.2 538 483+123 44.8 516
MCH (pg) 162+1.26 152 174 173+149 14.3 185 164+ 144 154 174 164£1.29 154 179
MCHC (g/dl) 33.8+344 304 36.1 328+349 30.7 359 358+245 315 379 33.1+£278 294 36.1
PMN (%) 15.6+6.79 153 21.35 17.5+589 1556 221 17.1+£581 1456 212 158+ 6.10 13.62 1899

sections stained with hematoxylin and eosin showed architecture (Figure 10b), pointing out that EEGE did
normal architecture in all experimental groups. Livers  not cause toxicity to these organs.

of animals treated with different doses of EEGE showed

no sign of necrosis, fatty degeneration, or inflammation  Discussion

(Figure 10a). Similarly, glomerulus structures, and pro-  The nature has been constant source of inspiration and
ximal and distal tubules in kidneys showed normal unsolved puzzle as source of medicinal compound [28];

AST ALT
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Figure 9 Aspartate aminotransferase (AST), Alanine aminotransferase (ALT) activities, Alkaline phosphatase, and LDH levels in serum
from mice treated with different doses of EEGE. The results express the mean + S.D. (n = 6/group). ANOVA was performed for statistical
comparison among groups.
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Figure 10 Histological findings (40x) in liver and kidney of
mice treated with different doses of EEGE. Adult swiss albino
mice were treated i.p. with daily 0.2 ml injections of 100, 200 and
300 mg/kg EEGE and on the next day after the last injections, liver
and kidney were submitted to routine histological processes. Mice
from the control group were treated with 0.2 ml of vehicle, PBS
containing 10% Tween 80. (@) Normal liver histological findings and
(b) normal kidney histological findings.

especially the marine source has been a reliable source
of novel medicinal molecules [29,30]. The interplay of
this source with advanced technologies can be extended
towards enhancing the discovery process and it leads to
the new hope of investigating new natural products will
continue to turn up even useful drugs to treat cancer
[31]. In our earlier report [32] we demonstrated an ini-
tial investigation of G. edulis as a potential candidate for
cancer treatment and due its high toxicity in cancer
cells. G. edulis is a rich source of combination of amino
acids, tissue nutrients, and pigments [33], fatty acid, pal-
mitic acid and high protein content [34]. In view of these
facts, this study was an attempt to evaluate the in vivo
and in vitro antitumor activity of G. edulis against EAT
cells and we used the ethanolic extract of the marine
product as a known source of pathological activity [35].
In addition, cultures of normal human peripheral blood
lymphocytes and a 35-day toxicity study in mice were
conducted to determine its possible toxic effects.
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The cytotoxicity effect of EEGE was the primary con-
siderations as the significant activity to induce cell death,
and this was demonstrated by MTT cytotoxic assay in
EAT cells and lymphocytes in addition to phosphatase
activity. MTT is reduced to formazan in cells indicating
cell redox activity and the reaction is an effect of mito-
chondrial enzymes and electron carriers [36]. In natural
compounds phosphatase activity determination is a suc-
cessful tool to evaluate cytotoxicity and as a parameter
to study the role of the natural compound induced adap-
tation to apoptosis and oxidative stress [37,38]. The ICs,
for the compound was similar in these two methods and
this cytotoxicity probably reflects the cell response to
particular kinds of damage, in this case, mitochondria
insult and/or oxidative stress. Additionally the dye exclu-
sion assay using trypan blue also confirmed that the re-
duction on cell viability and cell number was due to the
cytotoxic action of G. edulis to EAT cells. In contrast to
the activity against the EAT cells, EEGE showed lesser
effectiveness in normal human peripheral blood lympho-
cytes in similar experimental conditions, where the ICsq
value was about two fold higher than EAT cells. This is
in agreement with results previously published for other
marine natural products [39]. This reinforces the lower
EEGE toxicity for non-tumor cells than for tumor cells
and suggesting G. edulis as a promising agent for cancer
management.

When anticancer agents (whether in vivo or in vitro)
are used for treatment in cancer cell population, large
changes may occur in the cell, and in result of that many
cells are killed by the treatment, while others remain un-
affected, either because they are resistant or because of
biochemical, cell cycle, or extra-cellular environmental
sanctuaries. The major non-protein thiol of the cell,
GSH has chemoprotective action and the ratio of re-
duced glutathione (GSH): oxidized glutathione (GSSG)
is maintained at the optimum by the cell as the ratio is
critical to survival; a deficiency of reduced form of gluta-
thione is a risk of cell to oxidative damage since this ubi-
quitous cellular tripeptide plays a vital role in protecting
cells against oxidative damage by free radicals [40]. In
many pathological conditions including cancer the ratio
is observed as altered [41,42], distinct responses to
chemotherapeutic drugs have prompted cellular GSH
modulation as target for cancer chemotherapy [43]. Earlier
studies have presented evidence of correlation of high
GSH content and increased resistance to anticancer agents
[44,45]. This could be a cell- or cancer-specific response
and would be especially important to find a drug, which
can lower the GSH level and helps in sensitivity to certain
drugs, radiation and oxygen. GSH level of a cell makes it
more resistant to certain antitumor agents, radiation and
oxidative effects. On the other hand, therapy that de-
creases cellular GSH levels usually promotes sensitivity to
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certain drugs, radiation and oxygen [46]. It is also ob-
served by other investigators GSH plays important roles in
antioxidant defense, nutrient metabolism, and regulation
of cellular events including gene expression, DNA and
protein synthesis, cell proliferation, apoptosis, signal trans-
duction, cytokine production and the immune response
[47]. Results obtained in this study indicate that G. edulis
exhibits a dose-dependent cytotoxicity to EAT cells in par-
allel with reduced levels of GSH for all concentrations
used. Cell death induced by oxidative stress by G. edulis
may have impact on growth or death related factors and
in reduction of intracellular GSH, and conferred altered
antioxidant system. From earlier studies reported by nu-
merous investigators it is understood that increase in
intracellular ROS and depletion of intracellular GSH to
occur with the onset of apoptosis [48-50]. Morphological
alterations observed in the EAT cells treated with G. edulis
such as ruffling, blebbing, condensation of the plasma
membrane, and the aggregation of nuclear chromatin were
in concurrent with the initial hypothesis. Involvement of
ROS production in colon HT29 cells death induced by
natural products derived from marine source demon-
strated by individual investigators [51,52] and the nuclear
fragmentation investigated as proof of induced apoptosis
in oral squamous cell carcinoma cells [53]. Current drugs
commonly used in anticancer therapy induce apoptosis in
target cells, and it involves both receptor-mediated and
mitochondrial-mediated pathways. Disruption of the mito-
chondrial membrane potential, cytochrome c release and
activation of different caspases have already been de-
scribed following treatment of EAT cells with different
natural agents [54,55]. DNA fragmentation is observed as
an initial event in apoptosis and is considered to occur at
an early stage of apoptosis [56]. In this present study we
observed that apoptosis was an associated event in EAT
cells after incubation with G. edulis and increase in the
percentage of fragmented DNA quantified by the di-
phenylamine method, which occurs concurrently with an
increase in Annexin-V-FITC positive cells as an indicator
of apoptosis. EAT cells incubated with G. edulis demon-
strated increase in all caspase evaluated including caspase-2,
caspase-3 and caspase-9. Caspases are important members
in apoptosis mediated cell death and it is well-known that
the ROS level may influence the membrane potential in
mitochondria, and these caspases in mitochondria induce
release of pro-apoptotic factors by caspase cascade activa-
tion [57]. Upstream caspases in mitochondria are acti-
vated by pro-apoptotic signals from the cytoplasm leads
to proteolytic activation of downstream caspases like
caspase-3, followed by cleavage of set of vital proteins and
apoptotic degradation phase is initiated in the cell inclu-
ding DNA degradation and the typical morphologic fea-
tures [58]. Cell death by apoptosis was also reported in
glioma cell after treatment with marine sponge, which was
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correlated with the elevation of ROS and calcium levels,
the impairment of mitochondrial function and the acti-
vation of caspases [59] and DNA degradation [60]. De-
pletion of glutathione is reported to be associated with
apoptosis following enhanced cell death of tumor cells
where the essential sulfhydryl group of glutathione is
lost resulting in a changed calcium homeostasis and
ultimately loss of cell viability. ROS generation by G.
edulis treatment in the EAT cells leads to increase in
reduced GSH contents and may contribute to the cell
death.

The results from this study indicate G. edulis exhibited
antiproliferative and apoptotic activities against EAT cells
in vitro and is a promising candidate for extensive screen-
ing in animal model. To the best of our knowledge, we re-
port the in vivo antitumoral activity of G. edulis for the
first time. An expected rapid increase in ascites tumor vo-
lume was observed in EAT cells bearing mice. Ascitic fluid
serves as direct nutritional source for tumor cells and is
highly essential for tumor growth and a rapid increase in
ascitic fluid meets the nutritional requirement of tumor
cells [61]. Animals treated with low doses of G. edulis
inhibited the tumor volume, viable tumor cells count and
increase survival rate of EAT cells bearing mice, opposed
to the reports with high doses of compound from natural
products from variety of sources including marine. Even
though the mechanism of action by which G. edulis is able
to produce these significant results is still not clear, ob-
served properties like changes in ROS production, GSH
level and activation of apoptosis followed by cell death
may be the contributing factors towards its anticancer ac-
tivity. Mice bearing EAT cells showed increase in survival
time after treatment with G. edulis deserves further in-
vestigation. This is first kind of study exploring the
pharmacological activities especially the anti-tumor ac-
tivities of G. edulis and consistent toxicity study of G.
edulis in vivo, where the complete hematology is de-
scribed, and the liver and kidney functions were investi-
gated by biochemical determination of AST, ALT, ALP
and LDH levels and histopathological examination of
these tissues in mice given daily i.p well tolerated doses
of 100, 200, 300 mg/kg of EEGE. Animals treated with
G. edulis showed no clinical signs of gross toxicity or
change in behavior. And the treatment did not affect
the body weight gain in comparison with the control

group.

Conclusion

Results from this study from all experiments congregate
to a noticeable observation of the antitumoral activity of
G. edulis on EAT cells in vitro and in vivo, and there was
no considerable toxicity to major organs in mouse model.
It is important to mention that cautious observation of
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such natural products from marine source to be a signifi-
cant candidate in antitumor and apoptosis inducing drug
group and to combat human cancer where formation
of peritoneal malignant ascites is a fundamental basis
of morbidity and mortality.
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